
Towards Radical Agent-Oriented Software Engineering Processes   277

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Towards Radical
Agent-Oriented

Software Engineering
Processes Based on

AOR Modelling
Kuldar Taveter

VTT Information Technology, Finland

Gerd Wagner
Eindhoven University of Technology, The Netherlands

Abstract

This chapter proposes a new agent-oriented software engineering process
called RAP, which follows the Rational Unified Process (RUP) in many
ways, but is based on Agent-Object-Relationship (AOR) modelling instead
of object-oriented modelling. The chapter briefly presents the foundational
ontology that supports the methodology and introduces the RAP/AOR
viewpoint modelling framework. It then describes the modelling from the
interaction, information, and behavior aspects of the framework by using
a case study of business-to-business electronic commerce. Finally, the
chapter describes an implementation approach based on the Model Driven



278   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Architecture (MDA) and Extended Markup Language (XML). The
methodology is aimed at the creation of distributed socio-technical systems
consisting of both humans and technical, including software, components
that may, in turn, include software agents.

Introduction

A Radical Agent-Oriented Process (RAP) defines a software engineering
process1 using the Agent-Object-Relationship (AOR) modelling language pro-
posed by Wagner (2003a). In AOR modelling, the agents in a problem domain
are distinguished from the non-agentive objects. The agents’ actions, event
perceptions, commitments, and claims, as well as their rights and duties, are
explicitly included in the models.

The RAP/AOR methodology is based on Wagner (2003a) and Taveter (2004a).
Wagner (2003a) presents an agent-oriented approach to the conceptual model-
ling of organizations and organizational information systems, called AOR mod-
elling, where an entity is either an agent, an event, an action, a claim, a
commitment, or an ordinary object, and where special relationships between
agents and events, actions, claims, and commitments supplement the fundamen-
tal association, aggregation, and generalization relationship types of Entity-
Relationship (ER) and UML class modelling. Business processes are viewed as
social interaction processes emerging from the behaviour of the participating
agents. In the proposed approach, behaviour is primarily modelled by means of
interaction patterns expressed in the form of reaction rules that are visualized in
interaction pattern diagrams.

Taveter (2004a) proposes an integrated business modelling technique – the
Business Agents’ Approach – that is based on AOR modelling. Taveter (2004a)
emphasizes that in addition to being a technological building block, an agent is an
important modelling abstraction that can be used at different logical levels in the
creation and development of an information system. The Business Agents’
Approach suggests an elaboration of the existing business modelling frameworks
– six perspectives of agent-oriented business modelling for distributed domains.
These perspectives are the organizational, informational, interactional, func-
tional, motivational, and behavioural perspective. The Business Agents’ Ap-
proach covers modelling from all the perspectives mentioned by employing a
combination of goal-based use cases, the AOR Modelling Language (AORML),
and Object Constraint Language (OCL), forming a part of UML 2.0 (OMG,
2003b). The Business Agents’ Approach also extends the graphical notation of
AORML by activity diagrams that are executable and enable to represent
models of several or all perspectives in just one diagram.



Towards Radical Agent-Oriented Software Engineering Processes   279

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The RAP/AOR methodology can be viewed as an agent-oriented refinement of
the Unified Software Development Process proposed by Jacobson, Booch, and
Rumbaugh (1999) and its commercial complement, the Rational Unified
Process (RUP) (Kruchten, 1999). It aims at achieving more agility than the
RUP by using simulation for early testing of analysis and design models.

Agile methodologies, such as the Extreme Programming proposal of Beck
(1999), have received much attention recently (Fowler, 2003). They emphasize
the value of lightweight ad hoc processes based on test-case-based development
and rapid prototyping and de-emphasize the value of detailed modelling on which
they blame the heavy weight and inflexibility of traditional methodologies and the
RUP. While we acknowledge the significance of agility, we disagree with their
analysis that blames modelling as the source of inflexibility. Rather, we agree
with the Model-Driven Architecture (MDA, http://www.omg.org/mda/) ap-
proach of the Object Management Group (OMG) where modelling is identified
as the core of state-of-the-art software engineering that is scientifically well-
founded. When a model-driven approach includes early testing of models by
means of simulation, agility is achieved even without setting a focus on code and
rapid prototyping.

We are aware of two other agent-oriented methodologies that also claim to
follow the RUP.

The ADELFE methodology described in (Bernon, Glaizes, Peyruqueou, &
Picard, 2002) is targeted at the engineering of adaptive multi-agent systems to
be used in situations where the environment is unpredictable or the system is
open. This niche methodology is based on the Adaptive Multi-Agent Systems
(AMAS) theory (Capera, Georgé, Gleizes, & Glize, 2003) and shares, with RAP/
AOR, prototyping by simulation.

The MESSAGE methodology (Evans et al., 2001) has been developed for the
particular needs of the telecommunications industry. The analysis model views
of MESSAGE can be compared to the viewpoint aspects of RAP/AOR: the
organization view and interaction view are subsumed under the interaction
viewpoint aspect, the goal/task view and agent/role view roughly correspond to
the behaviour aspect, and the domain view corresponds to the information
aspect. Although both MESSAGE and RAP/AOR have business processes as
a starting point, for business process modelling MESSAGE employs UML
activity diagrams that are, in our opinion, not truly agent-oriented. The reason is
that it is questionable to model the invocations of activities in the spheres of
responsibility of different “actor objects” (resp. agents) as state transitions, as
it is done between “swim lanes” in activity diagrams because “actor objects,”
which are independent of each other, do not share states.

Unlike these two RUP-based agent-oriented methodologies, RAP/AOR is more
concerned with distributed agent-based information systems (such as business



280   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process automation and supply-chain management systems) for the business
domain and not so much with Artificial Intelligence (AI) systems.2 This
difference implies that we are not so ambitious about capturing human-like
intelligence features such as desires and intentions, or sophisticated forms of
proactive behaviour. Rather, in RAP/AOR we focus on declarative models of
communication and interaction founded on reactive behaviour and on the basic
mental state components of beliefs, perceptions, and commitments.

Note that perceptions, as the mental state component that is the basis of
communication and interaction, have been neglected in the popular Belief-
Desire-Intention (BDI) model (Rao & Georgeff, 1991). Following the logic-
based AI tradition, which is only interested in reasoning/thinking and tends to
ignore other cognitive aspects and activities, the BDI paradigm has treated
beliefs and reasoning as primary and perceptions and communication as second-
ary. However, as has been pointed out in the speech act theory (Austin, 1962),
in reality, it is the other way around: communication is primary, and the concepts
of beliefs and assertions are based on communication. In some BDI approaches,
perceptions are indeed treated as beliefs. However, this is clearly unsatisfactory,
both conceptually and technically. The perception of an event can indeed be
mapped into a corresponding “event has happened” belief; but we cannot assume
that this is the case with all perceptions, since this would not be the case with
irrelevant perceptions and would lead to an overflow of the belief/knowledge
base of an agent. Conceptually, perceptions are transient (and are consumed by
the attention process), while beliefs are persistent.

In comparison with recent techniques and notations for creating executable
business process specifications based on Web Services (WS) (http://www.w3.org/
2002/ws/), such as BPEL4WS (http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel/) and BPML (BPML, 2002), the difference be-
tween an approach based on WS and an agent-oriented approach like RAP/AOR
should first be clarified. Even though Web Services Description Language
(WSDL) (W3C, 2004) allows the representation of a message sequence
consisting of, for example, receiving a message and replying to it, this is far from
the dynamics of agent communication protocols like Contract Net standardized
by the Foundation for Intelligent Physical Agents (FIPA) http://www.fipa.org/
). Secondly, in principle, an interface to a software agent can be embedded in a
WS-based interface that seems to be in line with the Web Services Architecture
(WSA) of the World Wide Web Consortium (W3C, 2003), according to which
services are provided by software agents.

An essential objective of the RAP/AOR methodology is to enhance team
productivity by agent-based work process management including both (well-
structured) workflows and spontaneous interactions among team members and
their software assistants. This issue is not covered in the present version of RAP/
AOR but will be the topic of future work.



Towards Radical Agent-Oriented Software Engineering Processes   281

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The RAP/AOR Methodology

The RAP/AOR methodology emphasizes the importance of precise modelling of
the problem domain at hand for achieving an agent-based information system
with the required functionality. The preciseness of domain modelling is ensured
by the ontological foundation of the RAP/AOR methodology. It defines concepts
such as physical agent, non-agentive object, action event, social moment, and
institutional agent. Based on the ontological foundation, AORML introduces a
graphical notation for modelling the structure of an agent’s mental state,
comprising the modelling of agent types, their internal and external object types,
action and non-action event types, and commitment/claim types. Additionally,
AORML introduces reaction rules as its most important behaviour modelling
element.

The RAP/AOR viewpoint modelling framework enables viewing and modelling
a problem domain from the interaction, information, and behaviour viewpoint
aspects. Different kinds of models/diagrams are used for modelling from
different aspects, such as agent diagrams and interaction-frame diagrams of
AORML and use-case diagrams of UML from the interaction aspect, agent
diagrams from the information aspect and goal-based use-case models, and
interaction-pattern diagrams and AORML activity diagrams from the behaviour
aspect. The RAP/AOR viewpoint modelling framework also distinguishes
between the abstraction levels of conceptual domain modelling, computational
design, and implementation. At the level of conceptual domain modelling, we
adopt the perspective of an external observer who is observing the (prototypical)
agents and their interactions in the problem domain under consideration. At the
levels of computational design and implementation, we adopt the internal (first-
person) view of a particular agent to be modelled and implemented, for example,
of an agentified information system (i.e., an information system represented as
one or more software agents).

Ontological Foundations of the RAP/AOR Methodology

The ontological foundation of the RAP/AOR concepts is provided by the Unified
Foundational Ontology (UFO) proposed by Guizzardi and Wagner (2004). In
addition to a foundation layer, called UFO-A, and the perdurant ontology layer
UFO-B, UFO includes an agent ontology layer, UFO-C, which is the basis of
AORML. UFO-C is summarized in the form of a UML class diagram in Figure
1, and in the form of a controlled English vocabulary presented below. While
beliefs and perceptions are categorized as mental moments (endurants that
existentially depend on one agent, their “bearer”), commitments are categorized
as social moments (endurants that existentially depend on several agents).



282   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We include this summary of UFO in this chapter because we want to give the
reader an idea of what a foundational ontology is and how it can help in
establishing a modelling method. The reader should know, however, that, lacking
the necessary space, we cannot treat this topic in greater depth here.

The most important concepts for the purposes of the RAP/AOR methodology,
presented in controlled English, are:

• physical agent: physical object that creates action events affecting
other physical objects, that perceives events, possibly created by other
physical agents and to which we can ascribe a mental state

Examples: a dog; a human; a robot

• action event: event that is created through the action of an agent

• agent creates action event: designated relationship

• agent perceives event: designated relationship

• non-agentive object: physical object that is not a physical agent

Examples: a chair; a mountain

• communicating agent: agent that creates communicative action events
directed to other communicating agents and that perceives communica-
tive action events that possibly lead to changes in its mental state

• social moment: moment individual that is existentially dependent on more
than one communicating agent

Examples: a commitment; a joint intention

• communicative action event: action event by which a communicating
agent, the sender, sends a message to one or more other communicating
agents, the receivers

• message: social moment that is exchanged between communicating
agents in a communicative action event

• communicating agent sends message to communicating agent: desig-
nated relationship

Inverse relationship: communicating agent receives message from
communicating agent

• sender: role name that refers to the first argument of the communicating
agent sends message to communicating agent relationship type

• receiver: role name that refers to the second argument of the communicat-
ing agent sends message to communicating agent relationship type

• institutional agent: social fact (Searle, 1995) that is an aggregate
consisting of communicating agents (its internal agents, which share a



Towards Radical Agent-Oriented Software Engineering Processes   283

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

collective mental state), and that acts, perceives, and communicates
through them

Examples: a business unit; a voluntary association

• agent: endurant that is either a physical agent, an institutional agent or
a software agent

Note that the term agent is defined as an abstraction that subsumes physical
agents, social agents, and software agents. Since software entities are difficult
to understand ontologically (in which sense does a software entity exist in the real
world?), the category of software agents is not included in the current version
of UFO. But even if no ontological account of software agents is provided by the
foundational ontology, it may still be of great value for a software engineering
method, such as RAP/AOR, since it can help to motivate and explain the choice
of its modelling constructs and to provide guidelines on how to use a modelling
language. For instance, UFO provides an account of the meaning of roles on the
basis of its distinction between role type and base type (see the following). Role
modelling is an important issue in all agent-oriented modelling methods.

Figure 1. The main categories of UFO-C described as a MOF/UML model

Intrinsic
Moment

Physical
Agent

Non-Action
Event

MentalMoment

1* inheres in

ActionEvent

1..*

*creates

*

*

perceives

Non-Agentive
Object

Communicating
PhysicalAgentSocialMoment

{disjoint}

* 2..*

� bears

Institutional
Agent InternalAgent*

*

Communicating
Agent

Belief

Commitment

Perception

PhysicalObject
(from UFO-A)

Event
(from UFO-B)

MomentIndividual
(from UFO-A)

Communicative
ActionEvent{disjoint}

{disjoint}

Message

* 1

Receiver

1..*

*

Sender 1

*

{disjoint}



284   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UFO distinguishes between different kinds of entity types as shown in Figure 2.
These distinctions are defined as follows:

• sortal type: type that provides an identity criterion for determining if two
instances are the same

Examples: Person; Student; City

• mixin type: type that is not a sortal type and can be partitioned into disjoint
subtypes, which are sortal types with different identity criteria

Examples: Agent; Customer; Product

• base type: sortal type that is rigid (all its instances are necessarily its
instances)

Examples: Mountain; Person

• phase type: sortal type that is anti-rigid (its instances could also not be
instances of it without losing their identity) and that is an element of a
subtype partition of a base type

Examples: Town and Metropolis are phase subtypes of City; Baby,
Teenager and Adult are phase subtypes of Person

• role type: sortal type that is anti-rigid and for which there is a relation-
ship type such that it is the subtype of a base type formed by all instances
participating in the relationship type

Examples: DestinationCity as a role subtype of City; Student as a role
subtype of Person

We understand a mixin type as a union of other types that does not have a uniform
identity criterion for all its instances. Many mixin types are role mixin types, that
is, mixin types that can be partitioned into role subtypes. For instance, Customer
is a role mixin type: it can be partitioned into PersonalCustomer and
CorporateCustomer, both of which are role subtypes (of Person and Corpora-
tion, respectively).

Note that an actor (more precisely, actor type) is an agent role type. For
instance, the actor type CEO is a role subtype of the base type Person. In many
cases, an actor type is an agent role mixin type. For instance, the actor type
BookingClerk can be partitioned into HumanBookingClerk (being a role subclass
of Person) and SoftwareAgentBookingClerk (being a role subclass of
SoftwareAgent).

In the RAP/AOR methodology, we view the autonomy of an agent as a relative
rather than an absolute characteristic. An institutional agent consisting of
internal agents is thus autonomous in relation to other institutional agents, at least



Towards Radical Agent-Oriented Software Engineering Processes   285

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to some degree. The autonomy of an internal agent is even not always desired
in systems of the kind this methodology targets. For example, an autonomous
agent could reject commitments arising from its duties, which is something we
would not want for a communicating internal agent (e.g., a software agent)
forming a part of an institutional agent (e.g., a company). However, we may
allow that an internal agent makes its own prioritization decisions, which could
also be viewed as a kind of autonomy. We thus understand an internal software
agent as a kind of communicating decision-support system that makes decisions
or proposes them to a human user based on the information retrieved from other
enterprise systems of the company.

The AOR Modelling Language

AORML is used as the main graphical description for work products of RAP/
AOR. We thus describe it first as a prelude to our use of it in the methodology
itself.

AORML is based on an ontological distinction between active and passive
entities, that is, between agents and (non-agentive) objects of the real world. The
agent metaphor subsumes artificial (software and robotic), natural (human and
animal), and social/institutional agents (groups, organizations, etc.).

In AORML, an entity is an agent, an event, an action, a claim, a commitment, or
an ordinary object. Only agents can communicate, perceive, act, make commit-
ments, and satisfy claims. Objects are passive entities with no such capabilities.

Figure 2. Different kinds of types in UFO-A

Entity
Type

PhaseType

MixinTypeSortalType

{disjoint}

{disjoint}

BaseType RoleType



286   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition to human and artificial agents, AORML also includes the concept of
institutional agents, which are composed of a number of other agents that act
on their behalf. Organizations and organizational units are important examples of
institutional agents.

There are two basic types of AOR models: external and internal models. An
external AOR model adopts the perspective of an external observer who is
looking at the (prototypical) agents and their interactions in the problem domain
under consideration. In an internal AOR model, we adopt the internal (first-
person) view of a particular agent to be modelled. While a (business) domain
model corresponds to an external model, a design model (for a specific agentified
information system) corresponds to an internal model that can be derived from
the external one.

Figure 3 shows the most important elements of external AOR mental state
structure modelling. In order to restore compatibility with the diagram notation
of UML 2.0 (OMG, 2003b), the graphical shape for an agent type has been
changed in this chapter from a round-cornered rectangle, which has been used
previously but which is now the UML symbol for an action/activity, to the shape
shown in Figure 3 (see also the agent types Buyer and Seller in Figure 4). In
AORML, we have overloaded this shape, which stands for a “subsystem” in
UML 2.0 (OMG, 2003b), with a different semantic by using it as a graphical
symbol for the <<AgentType>> stereotype of the base class Class of UML. In
other words, an agent type is viewed as a UML class instead of a “subsystem.”

An external AOR diagram, as represented in Figure 3, depicts the agent types
and instances (if applicable) of a problem domain, together with their internal
agent types and instances, their beliefs about objects and external agents, and the
relationships among agents and/or objects.

Figure 3. The core mental state structure modelling elements of external
AOR diagrams

Agent
Type

Message Type

Non-Communicative
Action Event Type

Non-Action
Event Type

Commitment/Claim
Type

sends

does
Internal
Object Type

External
Object Type receives

perceives

perceives

Action Event Type



Towards Radical Agent-Oriented Software Engineering Processes   287

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As has been shown by Wagner (2003b), mental state structure modelling in
AORML can be defined as a UML Profile, that is, it is a conservative extension
of UML class modelling.

According to Figure 3, the graphical notation of AORML distinguishes between
an action event type and a non-action event type and between a communica-
tive action event (or message) type and a non-communicative action event type.
Figure 3 also reflects that a commitment/claim type is coupled with the action
event type whose instance fulfills the corresponding commitment (or satisfies the
claim). Please note that for the sake of simplicity, in AORML, a communicative
action event is identified with a message while in the UFO-C ontology depicted
in Figure 1 they form different categories.

The most important behaviour modelling elements of AORML are reaction
rules, which are used to express interaction patterns. In symbolic form, a
reaction rule is defined as a quadruple ε, C → α, P where ε denotes an event
term (the triggering event), C denotes a logical formula (the mental state
condition), α denotes an action term (the triggered action), and P denotes a
logical formula (specifying the mental effect or post-condition).

As is shown in the legend of Figure 4, a reaction rule is visualized as a circle with
incoming and outgoing arrows drawn within the agent rectangle whose reaction
pattern it represents. Each reaction rule has exactly one incoming arrow with a
solid arrowhead that specifies the triggering event type. In addition, there may
be ordinary incoming arrows representing mental state conditions (referring to
corresponding instances of other entity types). There are two kinds of outgoing
arrows: one for specifying mental effects (changing beliefs and/or commit-
ments) and one for specifying the performance of (physical and communicative)
actions. An outgoing arrow with a double arrowhead denotes a mental effect. An
outgoing connector to an action event type denotes the performance of an action
of that type.

As an example, Figure 4 shows an interaction pattern diagram that specifies
the reaction rule R1 for a Seller’s behaviour in response to perceiving a
communicative action event of the type request PurchaseOrder. Both the mental
state condition and mental effect of the reaction rule are presented as expres-
sions in the Object Constraint Language (OCL) of UML 2.0 (OMG, 2003b)
attached to the corresponding arrows. The pre-condition for providing the Buyer
with the requested product is the availability of the ProductItem whose checking
in the internal database of the Seller is specified with the help of the correspond-
ing status predicate isAvailable and the OCL expression productID =
globalProductIdentifier. The post-condition representing the mental effect is
expressed as inventory = inventory@pre - requestedQuantity. The post-condition
affects the representation of the corresponding ProductItem in the Seller’s
internal database by decreasing its attribute inventory by the value of the attribute
requestedQuantity of the message received.



288   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The RAP/AOR Viewpoint Modelling Framework

The RAP/AOR viewpoint modelling framework described in Table 1 is based on
the perspectives of agent-oriented business modelling proposed by Taveter
(2004a) which is, in turn, rooted in the ideas of the Zachman framework (Sowa
& Zachman, 1992). The RAP/AOR viewpoint modelling framework is also well-
aligned with the MDA (http://www.omg.org/mda/) framework of OMG. It
consists of a matrix with three rows representing different abstraction levels and
three columns representing the viewpoint aspects interaction, information, and
behaviour. Each cell in this matrix represents a specific viewpoint, such as
Conceptual Interaction Modelling, Computational Information Design, or
Behaviour Implementation.

In the literature, the concept of viewpoints has been used differently in different
approaches. For example, the MDA defines only three viewpoints: computation-
independent modelling (CIM), platform-independent modelling (PIM), and plat-
form-specific modelling (PSM). We consider these viewpoints as viewpoint
dimensions and call them abstraction levels. Another approach, the Reference
Model for Open Distributed Processing (RM-ODP) (Putnam & Boehm, 2001)
defines five viewpoints. The correspondences between the MDA and RM-ODP
viewpoints and the Zachman and the RAP/AOR viewpoint modelling frame-
works are summarized in Table 2.

Figure 4. An interaction pattern: when receiving a PurchaseOrder, the Seller
provides the Buyer with a product according to the PurchaseOrder if there are
products available.

Buyer Seller

R1

Product
Item

isAvailable

productID =
globalProductIdentifier

productID
inventory

provideProduct
(PurchaseOrder)

request PurchaseOrder

globalProductIdentifier
requestedQuantity

inventory =
inventory@pre -

requestedQuantity

RR
triggering

event
mental
state

condition

mental
effect

outgoing
message

action



Towards Radical Agent-Oriented Software Engineering Processes   289

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Normally, in a software engineering project, one or more views are created for
each viewpoint, using the respective modelling language(s). A view is a diagram
or a model of another kind, like a tabular use case or a textual description. Thus,
a viewpoint-modelling framework defines the collection of engineering docu-
ments created and used in a software engineering project. In the following, we
briefly describe different viewpoints of the framework

Domain-Interaction Viewpoint

The domain-interaction viewpoint (Column 1 in Table 1) concerns the analysis
and modelling of active entities, that is, of agent types and instances and
relationships, as well as the interactions and communication between them.
The domain-interaction viewpoint comprises organization modelling. The pur-
poses of organization modelling are to identify:

Table 1. The RAP/AOR viewpoint modelling framework

Table 2. RAP/AOR stakeholders and the corresponding viewpoint names in
other frameworks

Viewpoint models Viewpoint aspect 
Abstraction level Interaction Information Behaviour 
Conceptual 
Domain Modelling 
 

AOR Agent Diagrams, UML Use 
Case Diagrams, AOR Interaction 
Frame Diagrams, AOR Interaction 
Sequence Diagrams 

AOR Agent 
Diagrams 

AOR Interaction Pattern 
Diagrams, Goal-Based  
Use Case Models,   
AOR Activity  Diagrams 

Platform-
Independent 
Computational 
Design 

UML Use Case Diagrams, AOR 
Reaction Frame Diagrams, User 
Interface Design Models, Security 
Models 

AOR Agent 
Diagrams 

AOR Reaction Pattern 
Diagrams, AOR Internal 
Activity Diagrams 

Platform-Specific 
Implementation 

UML Deployment Diagrams 
UML Class 
Diagrams 

UML Class Diagrams 

 

Viewpoint Names Abstraction level Audience/Stakeholders 

MDA RM-ODP Zachman 

Conceptual 
Domain Modelling 

owners/customers, users, domain 
experts 

CIM Enterprise Rows 1+2 

Computational 
Design 

systems analysts, software 
architects 

PIM Information + 
Computational 

Row 3 

Implementation programmers, database 
implementers, system integrators 

PSM Engineering +  
Technology 

Rows 4+5 

 



290   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a) the organization(s) of the problem domain;

b) the relevant organizational units that of which each organization to be
modelled consists;

c) the roles3 included by the organizational units; and

d) the types of relationships occurring between these agent types.

According to Zambonelli, Jennings, and Wooldridge (2001), among the five types
of relationships that can be identified between institutional agent types and/or
role types, control, benevolence, and dependency relationships are the most
relevant ones to modelling interactions between agents. Control relationships
identify the authority structures within an organization. Benevolence relation-
ships identify agents with shared interests. Dependency relationships exist
between agents because of resource restrictions where the depender depends
on the dependee for the availability of a physical or an informational resource.
For example, in Figure 5 there is the isBenevolentTo relationship between
instances of the role types Seller and Buyer.

The domain-interaction viewpoint is described with the help of four views:

1. AOR Agent Diagrams;

2. UML Use Case Diagrams;

3. AOR Interaction Frame Diagrams; and

4. AOR Interaction Sequence Diagrams.

Types of organizational units and roles can be represented by AOR agent
diagrams where different agent types may relate to each other through the
relationships of generalization and aggregation. An AOR agent diagram
depicts the agents and agent types of a problem domain, together with their
internal agents and agent types and the relationships among them. An agent
diagram, like the one shown in Figure 5, includes all agent (role) types of a
business domain. An important purpose of an agent diagram is to describe all
stakeholders that are involved in the business processes to be supported by the
socio-technical business system and to give an overview of the business system
viewed as an MAS.

A use case is defined as the specification of a sequence of actions, including
variants, that a system (or other entity) can perform, interacting with actors of
the system (OMG, 2003b). Since the system is itself an actor4 (Cockburn,
1997a), the model of interaction between an “actor” and a “system” of a use case
can also be applied in agent-oriented modelling. A UML use-case diagram, for
example, the diagram represented in Figure 6, shows the relationships among



Towards Radical Agent-Oriented Software Engineering Processes   291

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5. The agent diagram of the domain of business-to-business electronic
commerce

Q
uo

te
Li

ne
Ite

m

R
FQ

/Q
uo

te

re
qu

es
te

dR
es

po
ns

eD
at

e

Q
uo

te
Li

ne
Ite

m
S

ta
tu

sC
od

e

is
Bi

d

is
Su

bs
tit

ut
eP

ro
du

ct
Ac

ce
pt

ab
le

re
qu

es
te

dQ
ua

nt
ity

gl
ob

al
P

ro
du

ct
U

ni
tO

fM
ea

su
re

C
od

e
gl

ob
al

P
ro

du
ct

Id
en

tif
ie

r
un

itP
ric

e

P
ur

ch
as

eO
rd

er
/C

on
fir

m
at

io
n

P
ro

du
ct

Li
ne

Ite
m

re
qu

es
te

dQ
ua

nt
ity

re
qu

es
te

dU
ni

tP
ric

e
gl

ob
al

P
ro

du
ct

U
ni

tO
fM

ea
su

re
C

od
e

gl
ob

al
P

ro
du

ct
Id

en
tif

ie
r

sh
ip

pe
dQ

ua
nt

ity
un

itP
ric

e

P
ro

du
ct

Li
ne

Ite
m

S
ta

tu
sC

od
e

is
Ac

ce
pt

S
ub

st
itu

te
P

ro
du

ct
R

ef
er

en
ce

gl
ob

al
P

ro
du

ct
Su

bs
tit

ut
io

n-
R

ea
so

nC
od

e
gl

ob
al

P
ro

du
ct

Id
en

tif
ie

r

S
ub

st
itu

te
P

ro
du

ct
R

ef
er

en
ce

gl
ob

al
P

ro
du

ct
Su

bs
tit

ut
io

n-
R

ea
so

nC
od

e
gl

ob
al

P
ro

du
ct

Id
en

tif
ie

r

1

0.
.*

0.
.*

0.
.*

1
0.

.*

In
vo

ic
e

bi
llT

oA
cc

ou
nt

gl
ob

al
P

ay
m

en
tT

er
m

sC
od

e
to

ta
lIn

vo
ic

eA
m

ou
nt

In
vo

ic
eL

in
eI

te
m

to
ta

lL
in

eI
te

m
Am

ou
nt

1
1

1
0.

.*

1

0.
.*

1

1

is
N

oB
id

is
Pe

nd
in

g

is
R

ej
ec

t

is
Pe

nd
in

g

B
uy

er

S
el

le
r

P
ro

du
ct

Ite
m

O
fS

el
le

r

1
0.

.*

So
ftw

ar
e

Ag
en

t

C
le

rk

S
el

le
r P

ro
du

ct
Ite

m

So
ftw

ar
e

Ag
en

t

C
le

rk

<<
is

Be
ne

vo
le

nt
To

>>



292   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7. The interaction frame between agents of the types Buyer and Seller

Figure 6. A use case diagram showing the types of interactions between
agents of the types Buyer and Seller

Seller

Buyer

Order

Pay

Quote

request
RFQ/Quote

inform
RFQ/Quote

provideProduct
(PurchaseOrder)

payForProduct
(Invoice)

request
PurchaseOrder/

Confirmation

request
Invoice

provideProduct
(PurchaseOrder)

payForProduct
(Invoice)

inform
PurchaseOrder/

Confirmation

Buyer Seller



Towards Radical Agent-Oriented Software Engineering Processes   293

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

actors and the subject (system) and use cases (OMG, 2003b). The use cases
represented in the domain interaction viewpoint are business use cases (Cockburn,
2001), because they summarize the types of interactions between a customer,
which can be a human agent or an institutional agent, and the business, which is
an institutional agent.

According to Wagner (2003a), an AOR interaction-frame diagram provides a
static picture of the possible interactions between two (types of) agents without
modelling any specific process instance. An interaction-frame diagram de-
scribes in more detail the types of interactions summarized by the corresponding
use case. An interaction-frame diagram, like the one represented in Figure 7,
consists of various types of communicative action events, non-communicative
action events, commitments/claims (coupled with the corresponding types of
action events), and non-action events. Agents of the problem domain share the
entity types mentioned.

An AOR interaction-sequence diagram, like the one shown in Figure 8, depicts
(some part of) a prototypical instance of an interaction process. An interaction

Figure 8.  An interaction sequence between the agent instances BuyerA and
SellerB

request RFQ/Quote

inform
RFQ/Quote

provideProduct
(PurchaseOrder)

payForProduct
(Invoice)

request
PurchaseOrder/

Confirmation

request
Invoice

inform
PurchaseOrder/

Confirmation

BuyerA SellerB

globalProductIdentifier =
"1247"

1

2

3

4

5

6

7



294   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process is a sequence of action events and non-action events, performed and
perceived by agents and following a set of rules (or protocol) that specifies the
type of the interaction process. Agents may interact with their inanimate
environment or they may interact with each other.

Domain-Information Viewpoint

Representing the domain-information viewpoint (Column 2 in Table 1) for the
focus organization(s) can be regarded as creating a domain ontology that
provides a common framework of knowledge for the agents of the organization(s)
and external agents connected to the organization(s). Each agent of the problem
domain can see only a part of the ontology; that is, each agent views the ontology
from a specific perspective.

The domain-information viewpoint is described with the help of one view—AOR
Agent Diagrams.

In addition to describing agent types, an AOR agent diagram, like the one
represented in Figure 5, describes object types of the problem domain, as well
as their relationships to agent types and with each other. Each agent has beliefs
about its internal agents, about its “private” objects, and about all external agents
and shared objects that are related to it.

Domain-Behaviour Viewpoint

The domain-behaviour viewpoint (Column 3 in Table 1) addresses the modelling
of an agent’s functionality (what functions the agent has to perform), as well as
of the agent’s behaviour (when, how, and under what conditions work has to be
done). In the models of the domain-behaviour viewpoint, a modeller may abstract
away from particular internal agent types, like SoftwareAgent in Figure 5, and
create models of behaviour for the corresponding institutional agent types, like
Buyer and Seller in Figure 5. The domain-behaviour viewpoint is described with
the help of three views:

1. AOR Interaction-Pattern Diagrams;

2. Goal-Based Use Case Models; and

3. AOR Activity Diagrams.

AOR interaction-pattern diagrams, like the one depicted in Figure 4, focus on
general interaction patterns expressed by means of a set of reaction rules
defining an interaction process type. In an interaction-pattern diagram, the



Towards Radical Agent-Oriented Software Engineering Processes   295

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

actions performed by one agent may be, at the same time, the events perceived
by another agent. Figure 4 demonstrates that an interaction-pattern diagram can
visualize the reaction chains that arise by one reaction triggering another.
However, for adequate modelling of business processes, interaction-pattern
diagrams are not sufficient because they do not allow modelling of action
sequences. For this reason, we will introduce activities as a glue to connect the
actions of an agent within a business process to each other.

Actor types (or agent role types) are always characterized by goals because,
as noted by Kueng and Kawalek (1997), “human activity is inherently purpose-
ful”. In a business domain, a human or an institutional agent acting in the role of
a “customer” has a goal of having something accomplished. To achieve its goal,
the agent uses some service provided by another agent. An agent’s autonomy
implied by a benevolence relationship between the service provider and a
service requester means that the service provider performs the service re-
quested if it is able to do so, but the service provider also has an option to refuse
the service request. Even though the agent requesting the service may not
explicitly communicate its goals to the service provider agent, the latter always
“internalizes” the whole or a part of the customer’s goal in an attempt to provide
the service. For example, assuming that a customer has a goal of renting a car,
the goal of a car rental company is to provide the customer with a car, which is,
of course, a subgoal of the company’s higher level goal—to earn money through
renting cars. The car rental company tries to achieve this higher level goal by
“internalizing” as many customer goals as possible.

The “internalizations” of the goals of customers by service providers can be
modelled in different ways. For example, in the i* framework proposed by Yu
(1995), a customer’s goal can be captured by representing a goal dependency
where a depender (i.e., a customer) depends on the dependee (i.e., a service
provider) to bring about a certain state in the world. In the same framework,
setting and achieving of the corresponding internal goal by the dependee can be
modelled through a means-ends link, indicating a relationship between an
internal goal to be achieved and a means for attaining it, which is usually
performing a task (activity). As another example, in the KAOS framework
described by Lamsweerde (2003), goals of agents are “operationalized” into
specifications of services to be performed by an agent.

In our approach, we capture the goals of “customers” and their “internalizations”
by service providers by employing goal-based use case models. Use cases as
such were originally introduced by Jacobson (1992). Cockburn (1997a, 1997b)
proposed an extended version of use cases that he calls “use cases with goals.”
He elaborated goal-based use cases in Cockburn (2001). While a graphical UML
use-case diagram in the domain-interaction viewpoint summarizes types of
interactions between an external actor and the focus agent (the “system”), a
tabular goal-based use case models the behaviour of the focus agent.



296   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A goal-based use case, such as the use case represented in Table 3, consists of
a primary actor, the system under discussion, and a secondary actor. We will
call the system under discussion the actor in focus. In the domain-behaviour
viewpoint, where use cases describe the types of an organization’s business
processes, the actor in focus is the organization itself or an organization unit.
According to Cockburn (2001), the external primary actors are the actors
whose goals the organization is to satisfy. They include the company’s customers
and perhaps their suppliers. The external primary actors form a part of the
company’s stakeholders that includes the company shareholders, customers,
vendors, and government regulatory agencies. A secondary or a supporting
actor is an external actor that provides a service to the agent in focus, so that
the latter could achieve its goals. In parallel with the identification of primary
actors, the triggering events created by them to which the organization must
respond should be identified (Cockburn, 2001).

Internal and external actors in goal-based use cases straightforwardly corre-
spond to internal and external agents in AOR modelling. According to Cockburn
(1997a), each actor has a set of responsibilities that have been assigned to it
by external authorities. To carry out those responsibilities, it sets some goals. An
agent’s responsibility is realized as an activity that the agent performs in
response to perceiving an event of the corresponding type. The relationship
between an agent’s responsibilities, goals, and activities is illustrated by the
RAP/AOR metamodel fragment shown in Figure 9.

An activity is defined using workflow terminology as an uninterruptible amount
of work that is performed in a non-zero span of time by an actor (Eshuis, Jansen,

Table 3. A goal-based use case for the business process type “Process the
request for a quote”

USE CASE 1 Process the request for a quote. 
Goal of the 
Primary Actor 

To receive from the seller the quote. 

Goal of the Focus 
Actor 

To provide the buyer with the quote. 

Scope & Level Seller, primary task. 
Success End  
Condition 

The buyer has received from the seller the quote. 

Primary Actor 
Secondary Actors 

Buyer. 

Triggering event A request for a quote by the buyer. 
DESCRIPTION Step  Action 
 1 Check and register the availability of the product items included in the 

request for a quote. 
 2 Send the quote to the buyer. 

 



Towards Radical Agent-Oriented Software Engineering Processes   297

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

& Wieringa, 2002). Each activity belongs to some activity type. An activity type
(or task in Yu [1995]), like “Manage quoting,” is defined as a prototypical job
function in an organization that specifies a particular way of doing something
(Yu, 1995). It seems natural to allow specifying the start of an activity in the
action part of a reaction rule. In other words, an instance of an activity type is
created by means of a reaction rule in response to perceiving an event, which is
also reflected by the RAP/AOR metamodel fragment represented in Figure 9.
We define an AOR activity diagram, like the one shown in Figure 10, by making
the definition provided in UML 2.0 (OMG, 2003b) slightly more precise as a

Figure 9. The relationship between an agent’s responsibilities, goals and
activities

Figure 10. An incomplete model of the quoting business process type from
the perspective of Seller

<implies Responsibility1Activity
Agent
Goalhas>

1

0..*

includes>

0..*

Agent

1

has>
1

0..*

1

1

0..*

1

Event

<raises

starts>

triggers>

Reaction
Rule

1
1

2

has>

<is realized as 11

<perceives
10..*

1

1..*

0..1

Buyer Seller

R1
request

RFQ/Quote

q.quoteLineItem.forAll->
(quoteLineItemStatusCode.isBid or
quoteLineItemStatusCode.isNoBid)

Manage quoting
(q : Quote)

Process product items
(q : Quote)

Confirm quote
(q : Quote)inform

RFQ/Quote



298   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specification of parameterized behaviour that is expressed as a flow of execution
via a sequencing of subordinate activities whose primitive elements are individual
epistemic, physical, and communicative actions. As Figure 9 reflects, there are
two activity border events (start-of-activity and end-of-activity) implicitly
associated with the beginning and end of each activity. An activity border event
starts either a subactivity or a subsequent activity or triggers a reaction rule. The
start-of-activity event type is graphically represented by an empty circle with
the outgoing arrow to the symbol of the subactivity type or internal reaction rule.
The end-of-activity event type is visualized by drawing a triggering arrow from
the activity-type symbol to either the symbol of the next activity type or to the
symbol of the reaction rule triggered by an activity of the corresponding type.

The goal tied to an activity is defined as a condition or state of affairs in the world
that the agent would like to achieve (Yu, 1995). When a goal-based use case is
transformed into an activity diagram, the goal of the focus actor of the use case
is attached to the diagram’s outermost activity. The pre-condition of an activity
is a necessary condition that must be true when the activity is started. Pre-
conditions and goals may refer to status or intensional predicates of entity types.
They are defined for activity types by means of OCL.

Viewpoints of Design

As explained in section “The AOR Modelling Language,” an interacting system
(or agent), as a subject in its domain, does not have an objective but rather a
subjective view of the domain. This is reflected in RAP/AOR by a computa-
tional-design model, in which the internal (subjective) perspective of the system
to be built is adopted, in contrast to the external (objective) perspective adopted
in a conceptual-domain model. For instance, in the transformation of a domain-
information model into an information- design model for a specific agent, the
objective term action event is mapped onto the two indexical subjective terms,
action (if performed by the agent under consideration) and event (if performed
by other agents). Likewise, the objective term message is mapped onto the two
subjective terms, incoming message and outgoing message. This mapping is
also called internalization in RAP/AOR.

External models of the conceptual-domain modelling level are thus transformed
into internal models of the level of platform-independent computational design.
In particular, AOR agent diagrams are refined into more detailed agent diagrams
and business use cases are turned to system use cases. Analogously, AOR
interaction-frame diagrams are mapped to reaction-frame diagrams, AOR
interaction-pattern diagrams to reaction-pattern diagrams, and AOR-activity
diagrams to internal-activity diagrams.



Towards Radical Agent-Oriented Software Engineering Processes   299

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Role of Simulation in the RAP/AOR Methodology

We have shown in Wagner and Tulba (2003) that, with some minor extensions,
AOR models can be used for a certain form of agent-based discrete event
simulation called Agent-Object-Relationship Simulation (AORS). In RAP/
AOR, we employ AORS for achieving more agility in the software engineering
process by getting feedback from the execution of models before they are
implemented in a target technology platform.

AORS allows animating and testing both AOR domain-interaction and behaviour
models and AOR interaction and behaviour design models.

As has been shown in Taveter (2004a), simulation of behaviour models is
facilitated by the executability of complete and incomplete AOR activity
diagrams. An AORS system, for example, the implementation described in Luin,
Tulba, and Wagner (2004), includes an environment simulator that is responsible
for simulating exogenous events and the causality laws of the physical environ-
ment. Other actors of the problem domain can be simulated with various degrees
of realism.

The Core Disciplines of the RAP/AOR Methodology

The seven core software engineering disciplines of RAP/AOR, based on those
of RUP, are:

1. Domain modelling;

2. Requirements engineering;

3. Design;

4. Simulation;

5. Implementation;

6. Test; and

7. Deployment.

The first three disciplines listed above can be represented as the following task
sequence divided between different viewpoints:

1. Domain-interaction viewpoint:

1.1. Model agent types and instances of the problem domain and relation-
ships between them by using an AOR-agent diagram.



300   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1.2. Model possible interaction types between agents of the problem
domain by UML use cases.

1.3. Refine possible interaction types between agents of the problem
domain by AOR interaction-frame diagrams.

1.4. Model prototypical interaction processes of the problem domain by
AOR interaction-sequence diagrams.

2. Domain-behaviour viewpoint:

2.1. Model the behaviours of agents of the problem domain by goal-based
use cases.

2.2. Model the behaviours of agents of the problem domain by AOR
reaction- pattern diagrams (optional).

2.3. Transform goal-based use cases into AOR-activity diagrams.

2.4. Refine AOR-activity diagrams by more detailed behavioural con-
structs.

2.5. Complement goal-based use cases by the elements corresponding to
the behavioural constructs introduced.

3. Domain information viewpoint:

3.1. Model object types and instances of the problem domain and relation-
ships between them by using an AOR-agent diagram.

4. Design interaction, behaviour, and information viewpoints:

4.1. Turn AOR interaction-frame diagrams into AOR reaction-frame
diagrams.

4.2. When needed, complement AOR-reaction frame diagrams with user-
interface design models and security models.

4.3. Turn AOR interaction-pattern diagrams into AOR reaction-pattern
diagrams (optional).

4.4. Turn AOR-activity diagrams into internal AOR-activity diagrams.

4.5. Refine AOR-agent diagrams of the conceptual domain-modelling
level into AOR-agent diagrams of the computational-design level.

In large development projects, there will be a team for each of the seven
disciplines stated above.

The Phases of a RAP/AOR Development Project

Jacobson, et al. (1999) and Kruchten (1999) have pointed out that a software
development project has two dimensions: the temporal sequence of project



Towards Radical Agent-Oriented Software Engineering Processes   301

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

phases, and the composition of the overall development process of analysis,
design, simulation, implementation, and test activities carried out iteratively in
each phase. In RAP/AOR, we follow the distinction between four project
phases: inception, elaboration, construction, and transition, each of which
has one or two predominant software engineering disciplines according to Table
4. An important topic of our future work is aligning the phases of the RAP/AOR
development project with the Software Process Engineering Metamodel Speci-
fication (SPEM, 2002) so that a phase would be a specialization of WorkDefinition
such that its precondition defines the phase entry criteria and its goal defines the
phase exit criteria.

Case Study

Our case study is about the business process type of quoting in business-to-
business electronic commerce that is based on the RosettaNet standard (http:/
/www.rosettanet.org/). The RosettaNet’s “Request Quote” Partner Interface
Process® (PIP) enables a buyer to request a product quote from a provider and
a provider to respond with a quote. The prices and product availability reflected
in a quote may be influenced by an existing or potential relationship between a
buyer and provider. We now discuss the conceptual modelling of this problem
domain in terms of the RAP/AOR viewpoint modelling framework. We also
briefly address the computational design of a business-to-business process
automation system for the problem domain.

The Interaction Aspect

At the level of conceptual domain modelling (Row 1 in Table 1), the interaction
aspect (Column 1 in Table 1) is captured by conceptual AOR- interaction
models that are represented by using the following views: AOR-agent diagrams,

Table 4. Project phases with predominant software engineering disciplines

Project Phase Predominant Disciplines 
Inception domain modelling & requirements engineering 

Elaboration design & simulation 
Construction implementation & test 

Transition deployment 
 



302   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UML use-case diagrams, AOR interaction-frame diagrams, and AOR interac-
tion-sequence diagrams.

At the level of computational design (Row 2 in Table 1), the interaction aspect
is captured by AOR reaction-frame diagrams.

The agent diagram of Figure 5 represents the agent role types Buyer and Seller
of the case study, with their respective internal agent types Clerk and SoftwareAgent.
For simplicity, other relevant agent types like Bank have been omitted in the
figure. There is the isBenevolentTo relationship between instances of the role
types Seller and Buyer in Figure 5. This relationship typically appears between a
service provider and requester.

A use-case diagram as depicted in Figure 6 summarizes the types of interactions
between two agents of the type Buyer and Seller, which act as a service requester
and provider, respectively. Interactions between a service requester and pro-
vider are further refined in the interaction-frame diagram in Figure 7, which
covers the business process types of quoting, ordering, and invoicing between
instances of the agent role types Buyer and Seller The interaction frame
represented in Figure 7 contains types of communicative action events (mes-
sages) such as request PurchaseOrder/Confirmation, which is used for ordering,
non-communicative action event types like provideProduct, and types of commit-
ments/claims coupled with them. Each communicative action event type is
prefixed by one of two functions of message types5: request, by which a sender
requests the receiver to perform a communicative or physical action or both, and
inform, which identifies a communicative action performed in reply to a request
or independently.

Interaction-frame diagrams may be complemented by interaction-sequence
diagrams, which depict prototypical instances of interaction processes. The
interaction- sequence diagram in Figure 8 represents instances of the business
process types of quoting, ordering, and invoicing between the agents BuyerA and
SellerB.

An interaction-frame diagram of the conceptual domain-modelling level can be
turned into a reaction-frame diagram of the computational-design level by the
process of internalization, which was briefly described in an earlier
section,“Viewpoints of Design.” In that process, the external AOR model is
transformed into an internal AOR model for the (type of) focus agent for which
an agentified information system is to be developed (typically an organization or
an organizational unit). For example, Figure 11 represents the reaction frame
created for an instance of the agent role type Seller. This model has been
obtained from the interaction frame shown in Figure 7.



Towards Radical Agent-Oriented Software Engineering Processes   303

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Information Aspect

At the level of conceptual-domain modelling (Row 1 in Table 1), the information
aspect (Column 2 in Table 1) is captured by conceptual AOR information
models, which are represented by AOR agent diagrams.

The conceptual-information model of the problem domain of business-to-
business electronic commerce is represented in the agent diagram in Figure 5.
The figure shows that the object types PurchaseOrder/Confirmation, RFQ/Quote,
and Invoice are shared between agents of the types Buyer and Seller, while the

Figure 11. The reaction frame for an agent of the type Seller

Seller

request
RFQ/Quote

inform
RFQ/Quote

request
PurchaseOrder/

Confirmation

inform
PurchaseOrder/

Confirmation

provideProduct
(PurchaseOrder)

provideProduct
(PurchaseOrder)

request
Invoice

payForProduct
(Invoice)

payForProduct
(Invoice)

Buyer



304   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

object types ProductItemOfSeller and ProductItem are represented exclusively
within agents of the types Buyer and Seller, respectively. It is important to
emphasize here that a shared object type does not imply that all the agents whose
types are connected by an association to it have the same beliefs about it, or, in
other words, that there is a common extension of it shared by all agents. For
example, different instances of the agent role type Buyer in Figure 5 hold different
sets of instances of RFQ/Quote.

Instances of the object type Seller within an instance of Buyer represent
information about the corresponding instances of the agent type Seller. An object
of the type QuoteLineItem in Figure 5 satisfies one of the following status
predicates: isBid, isNoBid, and isPending, while an object of the type
ProductLineItem represented in the same figure is characterized by the status
predicate isAccept, isReject, or isPending.

At the level of computational design (Row 2 in Table 1), the information aspect
is captured by detailed AOR-agent diagrams that include, for example, the types
of attributes and the identifiers for agent and object types.

The Behaviour Aspect

While the interaction aspect deals with the communication and interactions
between the agents, the behaviour aspect (Column 3 in Table 1) addresses the
agents’ reactions to the communicative and non-communicative action events
and non-action events perceived by them. At the level of conceptual modelling
(Row 1 in Table 1), the behaviour aspect is captured by the conceptual AOR
behaviour models that are represented by means of the following views: AOR
interaction-pattern diagrams, goal-based use-case models and AOR-activity
diagrams.

At the level of computational design (Row 2 in Table 1), the behaviour aspect is
captured by AOR reaction-pattern diagrams and AOR internal-activity dia-
grams.

Figure 4 serves as an example of an interaction-pattern diagram specifying the
reaction rule R1 for a Seller’s behaviour in response to perceiving a communi-
cative action event of the type request PurchaseOrder.

A goal-based use case can be triggered by an internal or external actor. For
example, the use case “Issue a request for a quote” with the buyer in focus is
triggered by the buyer’s internal actor “clerk,” while the use case “Process the
request for a quote” presented as an example in Table 3 is triggered by receiving
a request from a buyer for a quote. The use case (“Process the request for a
quote”) in Table 3 is modelled from the perspective of a buyer with the seller in
focus (scope), which means that the goal of the use case is the so-called user



Towards Radical Agent-Oriented Software Engineering Processes   305

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

goal, the goal of the actor (i.e., a buyer) trying to get work (primary task) done
(Cockburn, 1997a). The buyer is therefore the external primary actor of the use
case. Since the goal of the primary actor is “internalized” by the actor in focus,
unlike Cockburn, we also include the goal of the focus actor in a goal-based use
case, as is reflected by Table 3.

As shown in Taveter (2004a), a goal-based use case can be straightforwardly
turned into sequences and hierarchies of activity types whose instances are
performed by an agent. For example, an activity diagram as shown in Figure 10
corresponds to the use case represented in Table 3. In the figure, an activity of
the type “Manage quoting,” which is visualized as a roundtangle, is started by
reaction rule R1 in response to receiving a message containing a request for a
quote. As shown in Figure 10, an activity of the type “Manage quoting” consists
of sequential subactivities of the types “Process product items” and “Confirm
quote.”

For each activity type represented in Figure 10 can be defined the goal that its
instances try to achieve. The goal defined for the outermost activity type, which
is “Manage quoting” in Figure 10, corresponds to the focus actor’s goal of the
respective goal-based use case. For example, the goal of an activity of the type
“Process product items” is represented informally as “For each product item
included by the request for a quote is known whether it is to be bid or not.” This
goal can be formalized by means of OCL in terms of the input parameter declared
for the corresponding activity type, as is represented in Figure 10. Input
parameters defined for activity types represent the dataflow through the
activities.

Next, activity diagrams obtained from goal-based use cases are elaborated by
introducing into them behavioural constructs by means of reaction rules.
Taveter (2004a) has shown that AORML extended by activity modelling allows
the representation of 16 out of 19 behavioural workflow patterns as defined in
the benchmark proposal of Workflow Patterns (2003). The complete behavioural
model of the quoting business process type from the perspective of the agent role
type Seller is represented in Figure 12. As the figure shows, the behavioural
model shown in Figure 10 has been complemented by the behavioural constructs
of the types “For-each loop” and “Starting an activity by means of two (or more)
events.” In addition, elementary epistemic, physical, and communicative actions
that make up the activity types “Process product item” and “Confirm quote”
have been specified.

According to the behavioural construct of the type “For-each loop” represented
in Figure 12, upon the start of an activity of the type “Process product items,” its
subactivity of the type “Process product item” is performed for each instance of
the object type QuoteLineItem for which the pre-condition quote = q evaluates to
true. The pre-condition limits the set of QuoteLineItems for which the subactivity



306   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is performed to those belonging to the instance of Quote that is identified by the
value of the input parameter q. When all subactivities of the type “Process
product item” have ended, the enclosing activity of the type “Process product
items” also ends.

The subactivity “Process product item” in Figure 12 checks the availability of the
given product item that is specified by the input parameter item of the type
QuoteLineItem. If the product item corresponding to the instance of QuoteLineItem
is available in the quantity requested, the status of the QuoteLineItem is set to
isBid. In the opposite case, the status of the QuoteLineItem is changed to isNoBid.
In both cases, the attributes of the QuoteLineItem are updated accordingly.

Figure 12. The complete behaviour model of the quoting business process
type from the perspective of Seller

Buyer Seller

Manage quoting
(q : Quote)

Process product items
(q : Quote)

Confirm quote
(q : Quote)

inform
RFQ/Quote

R5

R1 Crequest
RFQ/Quote

Quote

QuoteLineItem

R2 {quote = q}

Clerk
approveQuote

ProductItem

isAvailable
(Integer)

isNoBid

QuoteLineItem
StatusCode

isBid

isPending

productID
unitPrice
itemsAvailable

{isAvailable
(item.requestedQuantity) and

productID =
item.globalProductIdentifier}

R4

Process product
item

(item:
QuoteLineItem)

UR3

U



Towards Radical Agent-Oriented Software Engineering Processes   307

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The behavioural construct of the type “Starting an activity by means of two (or
more) events” represented in Figure 12 specifies that, upon the end of an activity
of the type “Process product items,” if the agent perceives an approval of the
quote by an internal human agent of the type Clerk, an activity of the type
“Confirm quote” is started. An activity of the given type is thus started only after
events of all the specified types have occurred. In Figure 12, such events are the
ending event of the previous activity and an approval of the quote by a human
agent instance of the type Clerk.

Since goal-based use cases also serve to document business process types
modelled by activity diagrams, in Table 5, the use case “Process the request for

Table 5. A goal-based use case for the business process type “Process the
request for a quote”

Table 6: The subfunction “Process product item”

USE CASE 2 Process the request for a quote. 
Goal of the 
Primary Actor 

To receive from the seller the quote. 

Goal of the Focus 
Actor 

To provide the buyer with the quote. 

Scope & Level Seller, primary task. 
Success End  
Condition 

The buyer has received from the seller the quote. 

Primary Actor 
Secondary Actors 

Buyer. 

Triggering event A request for a quote by the buyer. 
DESCRIPTION Step  Action 
 1 For each product item included in the request for a quote: process 

product item (Use Case 3). 
 2 The quote has been approved by the clerk: send the quote to the buyer. 

 

USE CASE 3 Process product item. 
Goal of the 
Primary Actor 

 

Goal of the 
Focus Actor 

To decide bidding of the product item. 

Scope & Level Seller, subfunction. 
Pre-conditions  
Success End  
Condition 

The bidding of the product item has been decided. 

Primary Actor 
Secondary Actors 

Buyer. 
 

Trigger  
DESCRIPTION Step  Action 
 1 The product item is available in the quantity requested: the product 

item is to be bid which is registered in the quote. 
EXTENSIONS Step Branching Action 
 1a The product item is not available in the quantity requested: the product 

item is not to be bid which is registered in the quote. 

 



308   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a quote,” which was originally represented in Table 3, has been complemented
by the <condition> elements corresponding to the behavioural constructs
introduced. Please note that a subfunction6 of the primary task “Process the
request for a quote” presented in Table 6 contains the main (success) scenario
(Cockburn, 2001), in which the primary actor’s goal is delivered and all the
stakeholders’ interests are satisfied, and one extension scenario (Cockburn,
2001) that starts by stating where it picks up in the main scenario and what
conditions are different.

Simulation

Taveter (2004a) demonstrated that AORML extended by activities is the first
agent-oriented modelling language where partially specified behaviour models
by activity diagrams can be executed. For example, in our case study, an
incomplete conceptual AOR behaviour model of the quoting business process
type represented in Figure 10 can be executed, let alone the complete behaviour
model represented in Figure 12. This facilitates iterative business modelling that
is the state-of-the-practice. Using executable process models jointly with an
Agent-Object-Relationship Simulation (AORS) system, as described in Wagner
and Tulba (2003), permits the creation of powerful simulation environments. For
this purpose, as well as for the creation of actual agentified information systems,
the approach of transforming models into implementations described in
the“Implementation and Tools” section can be employed.

Implementation and Tools

The RAP/AOR methodology complies with the principles of the MDA frame-
work of OMG (http://www.omg.org/mda/). According to the overview of MDA
provided in Klasse Objecten (http://www.klasse.nl/english/mda/mda-
introduction.html), the MDA process defines three steps:

1. First, a model at a high level of abstraction that is independent of any
implementation technology is built. This is called a Platform Independent
Model (PIM). In the RAP/AOR methodology, the models listed in Row 2
of Table 1 form the PIM.

2. Next, the PIM is transformed into one or more Platform Specific Models
(PSM). A PSM is tailored to specify the PIM in terms of the implementation
constructs that are available in one specific implementation technology.



Towards Radical Agent-Oriented Software Engineering Processes   309

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. The final step is to transform a PSM to code. Because a PSM fits its
technology very closely, this transformation is rather trivial. The complex
step is the one in which a PIM is transformed into a PSM.

In principle, the transformation from a PIM into a PSM can be performed for
each software system to be built (e.g., an agentified information system)
separately. However, in the RAP/AOR methodology, we advocate an approach
where executable AOR models are transformed into equivalent XML-based
representations that are then interpreted and executed by software agents. In the
case study of automating business-to-business processes, which we described
in our case study, this is crucial because new business process types emerge and
old ones frequently change, as a result of which specifications of business
process automation systems are in constant flux.

In order to facilitate generation of XML-based representations of business
process models, we have developed the corresponding XML Schema (http://
www.w3.org/XML/Schema) whose instances describe business process types
in a machine-interpretable way. By using the schema, it is possible to represent
business process types from different perspectives. For example, the models of
the quoting business process type created in our case study are transformed into
two XML-based representations that describe the quoting business process type
from the perspectives of the agent role types Seller and Buyer.

Figure 13. The business process automation system

Business Process
Interpreter

JADE
agent

Interpret
business process

JADE
agent Representations of

business process
types

ACL
message

Interact
with agent

Maintainer

D
e

scriptio
n

 o
f

b
u

sin
e

ss pro
ce

ss
typ

e
 in

 X
M

L

Integrated
Business Process

Editor
(CONE)

Model
business
process

type
in the

extended
AORML

CRM
System

ERP
System

EAI
System

ACL
message

Instantiate
business

process type (...)

Interact
with agent

User User

Invoke agent



310   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the prototype application represented in Figure 13, inter-organizational
business process types are described in the (extended by activities) AORML by
means of the Integrated Business Process Editor. The latter has been developed
as an extension to the COnceptual Network (CONE) Ontology Editor of VTT
Information Technology. Figure 14 shows a snapshot of the model of the
RosettaNet-based quoting business process type that has been created by using
the editor from the perspective of Seller. Please note that since the older version
of AORML was originally defined on the basis of UML 1.5 (OMG, 2003a),
Figure 14 uses the old graphical notations for agents and activities in AORML.
Note also that the models represented in Figure 14 are external AOR models –
the process of internalization briefly described in section, “Viewpoints of
Design,” is performed implicitly when subjective XML-representations are
generated from an objective model of a business process type. In other words,
due to the implicit internalization, CIM serves as the starting point instead of
PIM.

Figure 14. The quoting business process type from the perspective of Seller
modelled by the Integrated Business Process Editor

 



Towards Radical Agent-Oriented Software Engineering Processes   311

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Integrated Business Process Editor allows graphical descriptions of busi-
ness process types expressed in AORML to be transformed into their represen-
tations in XML. Even though the XML-based representations of a business
process type are generated automatically, as a rule, some manual tailoring of
process-specific interfaces must be performed. This occurs between the
Business Process Interpreter and enterprise systems of the company. Enterprise
systems can include the Enterprise Resource Planning (ERP), Customer Rela-
tionship Management (CRM), and Enterprise Application Integration (EAI)
systems shown in Figure 13. After the generation and tailoring have been
accomplished, a business process type is ready to be interpreted by the Business
Process Interpreter, which works in cooperation with the software agent
representing the corresponding party. The latter has been implemented using the
Java Agent DEvelopment Framework (JADE) (http://jade.cselt.it/) agent plat-
form. Agents communicate with each other using messages in the Agent
Communication Language (ACL) defined by FIPA (http://www.fipa.org/),
which is based on speech acts (Austin, 1962). As Figure 13 illustrates, an agent
representing a party first invokes the Business Process Interpreter to read the
description of the business process type, as requested by the agent’s human user,
and to create its internal representation of the business process type. Thereafter,
when the agent receives a message or “perceives” an input by a human user
through the Graphical User Interface (GUI), the agent invokes the Business
Process Interpreter to act according to the process type description. When the
Business Process Interpreter acts, it, in turn, invokes the JADE agent and
displays messages through the agent’s GUI.

Strength and Weakness of the
RAP/AOR Methodology

At present, it is difficult to evaluate the RAP/AOR methodology, mainly because
some of its components—in particular, certain model transformations and
related tools—have not yet been fully developed. Consequently, a lack of tool
support and field testing reports is a weakness of the proposed methodology at
the time of writing this chapter. On the other hand, the experience gained in the
case study discussed and in implementing the tool support discussed in “Imple-
mentation and Tools” section have been encouraging and lead us to believe that
RAP/AOR is a natural extension of RUP+UML offering higher level modelling
constructs.



312   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Not supporting the design of proactive behaviour may be seen either as a
weakness or as a strength. It is certainly a weakness from an AI point of view;
however, we consider it to be a strength since the agents we want to design as
components of large-scale cross-enterprise distributed information systems do
not need proactive behaviour, nor do they need any other form of sophisticated
human-like intelligence. Rather, such agents typically have a complicated
structure of beliefs and commitments and a reactive behaviour based on them,
both of which can be captured by the RAP/AOR methodology.

Two particular strengths of the proposed methodology are its ontological
foundation and its use of simulation for achieving more agility. Another strength
is the possibility to represent the models of the interaction, information, and
behaviour viewpoint aspects in just one integrated diagram. This overcomes the
model multiplicity problem (Peleg & Dori, 2000), which is that, to understand
the system being studied and the way it operates and changes over time, the
reader must concurrently refer to various models.

An important open issue for RAP/AOR is the potential for an operational
commitment concept for designing and controlling business-to-business interac-
tions. The basic assumption of AOR modelling that, in addition to beliefs and
perceptions, commitments are the third mental state component that is important
for understanding and designing agent-to-agent interactions, has not yet been
validated in novel technologies and practical applications.

Conclusion

In this chapter, we have introduced the RAP/AOR methodology for agent-
oriented information systems engineering. Unlike many other agent-oriented
methodologies, RAP/AOR is not intended to be used in the development of AI
agent systems; rather, it targets the development of large-scale distributed and
cross-enterprise business information systems that may include or even consist
of software agents. RAP/AOR is an agent-oriented extension of RUP+UML by
adding the mental state structure modelling constructs of agents, events, actions,
commitments, and claims, and by adding the behaviour modelling constructs of
reaction rules and activities. Additionally, these modelling constructs fit well with
MDA. In particular, they yield a higher level PIM language that allows a more
direct mapping of CIM elements to PIM elements.



Towards Radical Agent-Oriented Software Engineering Processes   313

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Austin, J. (1962). How to do thing with words. Urmson Editor, Oxford, UK:
Clarenson Press.

Beck, K. (1999). Extreme programming explained: Embrace change. India-
napolis, IN: Addison-Wesley Professional.

Bernon, C., Glaizes, M-P., Peyruqueou, S., & Picard, G. (2002). ADELFE, a
methodology for adaptive multi-agent systems engineering. In P. Petta, R.
Tolksdorf, & F. Zambonelli, F. (Eds.), Engineering Societies in the
Agents World III, Third International Workshop (ESAW 2002), Madrid,
Spain, September 16-17. Revised Papers (pp. 156-169). LNAI 2577.
Berlin: Springer-Verlag.

BPML (2002). Business Process Modeling Language 1.0 and Business Process
Modeling Notation 0.9. (2002). Retrieved September 4, 2004, from http:/
/www.bpmi.org.

Capera, D., Georgé, J-P., Gleizes, M-P., & Glize, P. (2003). The AMAS theory
for complex problem solving based on self-organizing cooperative agents.
In Proceedings of the 1st International Workshop on Theory and
Practice of Open Computational Systems (TAPOCS03@WETICE 2003),
Linz, Austria, June.

Cockburn, A. (1997a). Goals and use cases. Journal of Object-Oriented
Programming, September.

Cockburn, A. (1997b). Using goal-based use cases. Journal of Object-
Oriented Programming, November/December.

Cockburn, A. (2001). Writing effective use cases. Reading, MA: Addison-
Wesley.

Eshuis, R., Jansen, D. N., & Wieringa, R. J. (2002). Requirements-level
semantics and model checking of object-oriented statecharts. Require-
ments Engineering Journal, 7(4), 243-263.

Evans, R., Kearney, P., Stark, J., Caire, G., Garijo, F. J., Gomez Sanz, J. J.,
Pavon, J., Leal, F., Chainho, P., & Massonet, P. (2001). MESSAGE:
Methodology for Engineering Systems of Software Agents. EURESCOM
Technical Information, 2001. Retrieved August 31, 2004, from http://
www.eurescom.de /~pub-de l i verab les /P900-ser ie s /P907 /TI1 /
p907ti1.pdf

Fowler, M. (2003). The new methodology. Retrieved September 4, 2004, from
http://martinfowler.com/articles/newMethodology.html#N400315

Guizzardi, G. & Wagner, G. (2004). On the ontological foundations of agent
concepts. In Proceedings of International Workshop on Agent-Ori-



314   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ented Information Systems (AOIS-2004) at CAiSE 2004, Riga, Latvia,
June.

Jacobson, I. (1992). Object-oriented software engineering: A use-case
driven approach. Reading, MA: Addison-Wesley.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). Unified software develop-
ment process. Reading, MA: Addison-Wesley.

Kruchten, P. (1999). Rational unified process – An introduction. Reading,
MA: Addison-Wesley.

Kueng, P. & Kawalek, P. (1997). Goal-based business process models: Creation
and evaluation. Business Process Management Journal, 3(1), 17-38.

Lamsweerde, A. van. (2003). From system goals to software architecture. In M.
Bernardo & P. Inverardi (Eds.), Formal methods for software architec-
tures, LNCS, 2804 (pp. 25-43). Berlin: Springer-Verlag.

Luin, J., van, Tulba, F., & Wagner, G. (2004). Remodelling the beer game as an
agent-object-relationship simulation. In Proceedings of Workshop 2003:
Agent-Based Simulation 5, Lisbon, Portugal, 3-5 May. SCS European
Publishing House.

OMG (2003a). Unified modeling language specification. March 2003, Version
1.5. Retrieved September 28, 2004, from http://www.omg.org/cgi-bin/
doc?formal/03-03-01

OMG (2003b). Unified modeling language: Superstructure. Version 2.0, August
2003. Retrieved September 25, 2004, from http://www.omg.org/cgi-bin/
doc?ptc/2003-08-02

Peleg, M. & Dori, D. (2000). The model multiplicity problem: Experimenting with
real-time specification methods. IEEE Transactions on Software Engi-
neering, 26(8).

Putman, J. & Boehm, B. (2001). Architecting with RM-ODP. Upper Saddle
River, NJ: Prentice Hall.

Rao, A. S. & Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, & E. Sandewall. (Eds.), Proceedings of
Knowledge Representation 91 (KR-91). San Mateo, CA: Morgan
Kaufmann.

Searle, J. R. (1995). The construction of social reality. New York: Free Press.

Sowa, J. F. & Zachman, J. A. (1992). Extending and formalizing the framework
for information systems architecture. IBM Systems Journal, 31(3).

SPEM: Software Process Engineering Metamodel Specification. November
2002, Version 1.0. Retrieved October 20, 2004, from http://www.omg.org/
docs/formal/02-11-14.pdf



Towards Radical Agent-Oriented Software Engineering Processes   315

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Taveter, K. (2004a). A multi-perspective methodology for agent-oriented
business modelling and simulation. Ph.D. Thesis, Tallinn University of
Technology, Estonia. (ISBN 9985-59-439-8).

Taveter, K. (2004b). From business process modelling to business process
automation. In J. Cordeiro & J. Filipe (Eds.), Computer-supported
activity coordination – Proceedings of the 1st International Workshop
on Computer Supported Activity Coordination (CSAC 2004). In con-
junction with ICEIS 2004, Porto, Portugal, April (pp. 198-210). Setubal ,
Portugal: INSTICC Press.

Wagner, G. (2003a). The agent-object-relationship meta-model: Towards a
unified view of state and behavior. Information Systems, 28(5), 475-504.
Available online at http://aor.rezearch.info/

Wagner, G. (2003b). A UML profile for external AOR models. In F.Giunchiglia,
J. Odell, & G. Weiss (Eds.), Agent-Oriented Software Engineering III,
Third International Workshop, AOSE 2002. Bologna, Italy, July 15,
Revised Papers and Invited Contributions. LNCS, Vol. 2585. Berlin:
Springer-Verlag.

Wagner, G. & Tulba, F. (2003). Agent-oriented modeling and agent-based
simulation. In P. Giorgini & B. Henderson-Sellers, (Eds.), Conceptual
modeling for ,novel application domains. LNCS, Vol. 2814. Berlin:
Springer-Verlag.

Workflow Patterns. (2003). Retrieved September 25, 2004, from http://
tmitwww.tm.tue.nl/research/patterns/

W3C (2003). Web Services Architecture (WSA). W3C Working Draft, 8
August 2003. Retrieved September 29, 2004, from http://www.w3.org/TR/
2003/WD-ws-arch-20030808/

W3C (2004). Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language. W3C Working Draft, 3 August 2004. Retrieved Septem-
ber 27, 2004, from http://www.w3.org/TR/2004/WD-wsdl20-20040803/

Yu, E. (1995). Modeling strategic relationships for process reengineering.
Ph.D. Thesis, Department of Computer Science, University of Toronto,
Canada.

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2001). Organisational
abstractions for the analysis and design of multi-agent systems. In P.
Ciancarini & M. Wooldridge (Eds.), Agent-oriented software engineer-
ing. LNCS 1957 (pp.127-141). Berlin: Springer-Verlag.



316   Taveter & Wagner

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Endnotes

1 Strictly speaking, the RAP defines a process type family whose members
are process types that can be instantiated by different process individu-
als. It is common practice, though, to use the term “process” ambiguously
both at the level of types and at the level of instances.

2 The RAP/AOR methodology has, for example, been used for creating a
prototypical system for the automation of business-to-business processes
described in Taveter (2004b).

3 A role can be understood as an “abstract characterization of the behaviour
of a social actor within some specialized context or domain of endeavor”
(Yu, 1995), such as the role Seller.

4 We use the terms “actor” and “agent” as synonyms.
5 These functions are actually speech acts (Austin, 1962).
6 A subfunction is a use case that is below the main level of interest of the

primary actor.


