Towards Radical Agent-Oriented Software Engineering Processes 277

Chapter X

TowardsRadical
Agent-Oriented
SoftwareEngineering
ProcessesBased on
AOR M oddlling

Kuldar Taveter
VTT Information Technology, Finland

Gerd Wagner
Eindhoven University of Technology, The Netherlands

Abstract

This chapter proposes a new agent-oriented software engineering process
called RAP, which follows the Rational Unified Process (RUP) in many
ways, but is based on Agent-Object-Relationship (AOR) modelling instead
of object-oriented modelling. The chapter briefly presents the foundational
ontology that supports the methodology and introduces the RAP/AOR
viewpoint modelling framework. It then describes the modelling from the
interaction, information, and behavior aspects of the framework by using
a case study of business-to-business electronic commerce. Finally, the
chapter describes an implementation approach based on the Model Driven

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

278 Taveter & Wagner

Architecture (MDA) and Extended Markup Language (XML). The
methodology is aimed at the creation of distributed socio-technical systems
consisting of both humans and technical, including software, components
that may, in turn, include software agents.

| ntroduction

A Radical Agent-Oriented Process (RAP) defines a software engineering
process! using the Agent-Object-Relationship (AOR) modelling language pro-
posed by Wagner (2003a). In AOR modelling, the agentsin a problem domain
are distinguished from the non-agentive objects. The agents' actions, event
perceptions, commitments, and claims, as well as their rights and duties, are
explicitly included inthemodels.

The RAP/AOR methodology is based on Wagner (2003a) and Taveter (20044).
Wagner (2003a) presents an agent-oriented approach to the conceptual model-
ling of organizationsand organizational information systems, called AOR mod-
elling, where an entity is either an agent, an event, an action, a clam, a
commitment, or an ordinary object, and where special relationships between
agentsand events, actions, claims, and commitments supplement the fundamen-
tal association, aggregation, and generalization relationship types of Entity-
Relationship (ER) and UML class modelling. Business processes are viewed as
social interaction processes emerging from the behaviour of the participating
agents. In the proposed approach, behaviour is primarily modelled by means of
interaction patterns expressed in theform of reaction rulesthat are visualized in
interaction pattern diagrams.

Taveter (2004a) proposes an integrated business modelling technique — the
Business Agents' Approach —that isbased on AOR modelling. Taveter (2004a)
emphasizesthat in additionto being atechnol ogical building block, anagentisan
important modelling abstractionthat can be used at different logical levelsinthe
creation and development of an information system. The Business Agents'
Approach suggestsan el aboration of the existing businessmodelling frameworks
—six perspectivesof agent-oriented businessmodelling for distributed domains.
These perspectives are the organizational, informational, interactional, func-
tional, motivational, and behavioural perspective. The Business Agents’ Ap-
proach covers modelling from all the perspectives mentioned by employing a
combination of goal-based use cases, the AOR Modelling Language (AORML),
and Object Constraint Language (OCL), forming a part of UML 2.0 (OMG,
2003b). The Business Agents' Approach also extends the graphical notation of
AORML by activity diagrams that are executable and enable to represent
models of several or all perspectivesin just one diagram.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 279

The RAP/AOR methodol ogy can be viewed as an agent-oriented refinement of
the Unified Software Development Process proposed by Jacobson, Booch, and
Rumbaugh (1999) and its commercial complement, the Rational Unified
Process (RUP) (Kruchten, 1999). It aims at achieving more agility than the
RUP by using simulation for early testing of analysis and design models.

Agile methodologies, such as the Extreme Programming proposal of Beck
(1999), havereceived much attention recently (Fowler, 2003). They emphasize
thevalue of lightweight ad hoc processes based on test-case-based devel opment
and rapid prototyping and de-emphasi ze the val ue of detailed modelling onwhich
they blametheheavy weight andinflexibility of traditional methodol ogiesandthe
RUP. While we acknowledge the significance of agility, we disagree with their
analysis that blames modelling as the source of inflexibility. Rather, we agree
with the Model-Driven Architecture (MDA, http://www.omg.org/mda/) ap-
proach of the Object Management Group (OMG) where modelling isidentified
as the core of state-of-the-art software engineering that is scientifically well-
founded. When a model-driven approach includes early testing of models by
means of simulation, agility isachieved even without setting afocuson codeand
rapid prototyping.

We are aware of two other agent-oriented methodologies that also claim to
follow the RUP.

The ADELFE methodology described in (Bernon, Glaizes, Peyruqueou, &
Picard, 2002) istargeted at the engineering of adaptive multi-agent systemsto
be used in situations where the environment is unpredictable or the system is
open. This niche methodology is based on the Adaptive Multi-Agent Systems
(AMAYS) theory (Capera, Georgé, Gleizes, & Glize, 2003) and shares, withRAP/
AOR, prototyping by simulation.

The MESSAGE methodology (Evans et al., 2001) has been developed for the
particular needs of the telecommunicationsindustry. The analysis model views
of MESSAGE can be compared to the viewpoint aspects of RAP/AOR: the
organization view and interaction view are subsumed under the interaction
viewpoint aspect, the goal/task view and agent/role view roughly correspond to
the behaviour aspect, and the domain view corresponds to the information
aspect. Although both MESSAGE and RAP/AOR have business processes as
a starting point, for business process modelling MESSAGE employs UML
activity diagramsthat are, in our opinion, not truly agent-oriented. Thereasonis
that it is questionable to model the invocations of activities in the spheres of
responsibility of different “actor objects” (resp. agents) as state transitions, as
it is done between “swim lanes’ in activity diagrams because “ actor objects,”
which are independent of each other, do not share states.

Unlikethese two RUP-based agent-oriented methodol ogies, RAP/AOR ismore
concerned with distributed agent-based information systems (such as business

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

280 Taveter & Wagner

process automation and supply-chain management systems) for the business
domain and not so much with Artificial Intelligence (Al) systems.? This
difference implies that we are not so ambitious about capturing human-like
intelligence features such as desires and intentions, or sophisticated forms of
proactive behaviour. Rather, in RAP/AOR we focus on declarative models of
communication and interaction founded on reactive behaviour and on the basic
mental state components of beliefs, perceptions, and commitments.

Note that perceptions, as the mental state component that is the basis of
communication and interaction, have been neglected in the popular Belief-
Desire-Intention (BDI) model (Rao & Georgeff, 1991). Following the logic-
based Al tradition, which is only interested in reasoning/thinking and tends to
ignore other cognitive aspects and activities, the BDI paradigm has treated
beliefsand reasoning asprimary and percepti onsand communi cation as second-
ary. However, as has been pointed out in the speech act theory (Austin, 1962),
inreality, itistheother way around: communicationisprimary, and the concepts
of beliefsand assertions are based on communication. In some BDI approaches,
perceptionsareindeed treated asbeliefs. However, thisisclearly unsatisfactory,
both conceptually and technically. The perception of an event can indeed be
mapped into acorresponding “event hashappened” belief; but we cannot assume
that thisis the case with all perceptions, since this would not be the case with
irrelevant perceptions and would lead to an overflow of the belief/knowledge
base of an agent. Conceptually, perceptions are transient (and are consumed by
the attention process), while beliefs are persistent.

In comparison with recent techniques and notations for creating executable
businessprocessspecificationsbased on Web Services(WS) (http://www.w3.org/
2002/ws/), such as BPEL4AWS (http://www-106.ibm.com/devel operworks/
webservices/library/ws-bpel/) and BPML (BPML, 2002), the difference be-
tween an approach based on WS and an agent-oriented approach like RAP/AOR
should first be clarified. Even though Web Services Description Language
(WSDL) (W3C, 2004) allows the representation of a message sequence
consisting of, for example, receivingamessage and replyingtoit, thisisfar from
the dynamics of agent communication protocols|like Contract Net standardized
by the Foundation for Intelligent Physical Agents (FIPA) http://www.fipa.org/
). Secondly, in principle, an interface to a software agent can be embedded in a
WS-based interface that seemsto bein linewith the Web Services Architecture
(WSA) of the World Wide Web Consortium (W3C, 2003), according to which
services are provided by software agents.

An essential objective of the RAP/AOR methodology is to enhance team
productivity by agent-based work process management including both (well-
structured) workflows and spontaneous interactions among team members and
their software assistants. Thisissueisnot covered inthe present version of RAP/
AOR but will be the topic of future work.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 281

The RAP/AOR M ethodology

The RAP/AOR methodology emphasizestheimportance of precise modelling of
the problem domain at hand for achieving an agent-based information system
with therequired functionality. The preciseness of domain modellingisensured
by the ontol ogical foundation of the RAP/AOR methodol ogy. It definesconcepts
such as physical agent, non-agentive object, action event, social moment, and
institutional agent. Based on the ontological foundation, AORML introduces a
graphical notation for modelling the structure of an agent’s mental state,
comprising the modelling of agent types, their internal and external object types,
action and non-action event types, and commitment/claim types. Additionally,
AORML introduces reaction rules as its most important behaviour modelling
element.

The RAP/AOR viewpoint modelling framework enablesviewing and modelling
a problem domain from the interaction, information, and behaviour viewpoint
aspects. Different kinds of models/diagrams are used for modelling from
different aspects, such as agent diagrams and interaction-frame diagrams of
AORML and use-case diagrams of UML from the interaction aspect, agent
diagrams from the information aspect and goal-based use-case models, and
interaction-pattern diagramsand AORML activity diagramsfromthe behaviour
aspect. The RAP/AOR viewpoint modelling framework also distinguishes
between the abstraction levels of conceptual domain modelling, computational
design, and implementation. At the level of conceptual domain modelling, we
adopt the perspectiveof an external observer whoisobservingthe (prototypical)
agents and their interactionsin the problem domain under consideration. At the
levels of computational design and implementation, we adopt theinternal (first-
person) view of aparticular agent to be modelled and implemented, for exampl e,
of an agentified information system (i.e., an information system represented as
one or more software agents).

Ontological Foundations of the RAP/AOR Methodologl

Theontological foundation of theRAP/AOR conceptsisprovided by the Unified
Foundational Ontology (UFO) proposed by Guizzardi and Wagner (2004). In
addition to afoundation layer, called UFO-A, and the perdurant ontology layer
UFO-B, UFO includes an agent ontology layer, UFO-C, which is the basis of
AORML. UFO-Cissummarized in the form of aUML class diagram in Figure
1, and in the form of a controlled English vocabulary presented below. While
beliefs and perceptions are categorized as mental moments (endurants that
existentially depend on oneagent, their “bearer”), commitmentsare categorized
as social moments (endurants that existentially depend on several agents).

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

282 Taveter & Wagner

We include this summary of UFO in this chapter because we want to give the
reader an idea of what a foundational ontology is and how it can help in
establishing amodelling method. Thereader should know, however, that, lacking
the necessary space, we cannot treat this topic in greater depth here.

The most important concepts for the purposes of the RAP/AOR methodology,
presentedin controlled English, are:

. physical agent: physical object that creates action events affecting
other physical objects, that perceives events, possibly created by other
physical agents and to which we can ascribe a mental state

Examples: a dog; a human; arobot
. action event: event that is created through the action of an agent
. agent creates action event: designated relationship
. agent perceives event: designated relationship
. non-agentive object: physical object that is not a physical agent
Examples: a chair; a mountain

. communicating agent: agent that creates communicative action events
directed to other communicating agents and that perceives communica-
tive action events that possibly lead to changes in its mental state

e social moment: moment individual that isexistentially dependent on more
than one communicating agent

Examples: acommitment; ajoint intention

. communicative action event: action event by which a communicating
agent, the sender, sends a message to one or more other communicating
agents, the receivers

. message: social moment that is exchanged between communicating
agents in a communicative action event

. communicating agent sends message to communicating agent: desig-
nated relationship

Inverse relationship: communicating agent receives message from
communicating agent

e sender: role name that refers to the first argument of the communicating
agent sends message to communicating agent relationship type

. receiver: role namethat refersto the second argument of the communicat-
ing agent sends message to communicating agent relationship type

. institutional agent: social fact (Searle, 1995) that is an aggregate
consisting of communicating agents (its internal agents, which share a

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 283

Figure 1. The main categories of UFO-C described as a MOF/UML model

PhysicalObjec

(from UFO-A) .
I: Momentindividud! N\ Event
(from UFO-A) ! (from UFO-B
L perceives
{disjoint}
Intrinsic Non-Agentiv {disjoint} .
Moment Object Non-Action
* Event
inheres in 1 Sros oal creates
MentalMomen ysica
7~ Agent 1%
disioint Z> Communicative@
{disjoint ActionEvent 9
* 1
| Belief | | Perception | .
« bears Communicating
PhysicalAgent .
/\ Receiver
L Communicating
d t 3
{disjoint} Agent
Institutional 1.
Agent * InternalAgent

L.

collective mental state), and that acts, perceives, and communicates
through them

Examples: a business unit; a voluntary association

. agent: endurant that is either a physical agent, an institutional agent or
a software agent

Note that the term agent is defined as an abstraction that subsumes physical
agents, social agents, and software agents. Since software entities are difficult
tounderstand ontol ogically (inwhich sensedoesasoftwareentity existinthereal
world?), the category of software agentsis not included in the current version
of UFO. But evenif no ontological account of software agentsisprovided by the
foundational ontology, it may still be of great value for a software engineering
method, such asRAP/AOR, sinceit can help to motivate and explain the choice
of itsmodelling constructs and to provide guidelines on how to use amodelling
language. For instance, UFO provides an account of the meaning of roleson the
basis of itsdistinction between roletype and base type (seethe following). Role
modellingisanimportant issuein all agent-oriented modelling methods.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

284 Taveter & Wagner

UFO distinguishes between different kinds of entity typesas shownin Figure 2.
These distinctions are defined as follows:

e sortal type: typethat provides an identity criterion for determining if two
instances are the same

Examples: Person; Student; City

. mixin type: typethat isnot asortal type and can be partitioned into disjoint
subtypes, which are sortal types with different identity criteria

Examples: Agent; Customer; Product

. base type: sortal type that is rigid (all its instances are necessarily its
instances)

Examples: Mountain; Person

. phase type: sortal type that is anti-rigid (its instances could also not be
instances of it without losing their identity) and that is an element of a
subtype partition of a base type

Examples: Town and Metropolis are phase subtypes of City; Baby,
Teenager and Adult are phase subtypes of Person

. role type: sortal type that is anti-rigid and for which there is arelation-
ship type such that it is the subtype of a base type formed by all instances
participating in the relationship type
Examples: DestinationCity as a role subtype of City; Student as a role
subtype of Person

Weunderstand amixintypeasaunion of other typesthat doesnot haveauniform
identity criterionfor all itsinstances. Many mixintypesarerolemixintypes, that
is, mixintypesthat can bepartitioned into role subtypes. For instance, Customer
is a role mixin type: it can be partitioned into Personal Customer and
CorporateCustomer, both of which are role subtypes (of Person and Corpora-
tion, respectively).

Note that an actor (more precisely, actor type) is an agent role type. For
instance, the actor type CEO isarole subtype of the base type Person. In many
cases, an actor type is an agent role mixin type. For instance, the actor type
BookingClerk can be partitionedinto HumanBookingClerk (being arole subclass
of Person) and SoftwareAgentBookingClerk (being a role subclass of
SoftwareAgent).

Inthe RAP/AOR methodology, we view the autonomy of an agent asarelative
rather than an absolute characteristic. An institutional agent consisting of
internal agentsisthusautonomousinrelationto other institutional agents, at | east

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 285

Figure 2. Different kinds of types in UFO-A

Entity

Type

AN
{disjoint}

]
| SortaIType| | MixinType|
{disjoint}

| BaseType | | RoleType | | PhaseType

to some degree. The autonomy of an internal agent is even not always desired
in systems of the kind this methodology targets. For example, an autonomous
agent could reject commitments arising from its duties, which is something we
would not want for a communicating internal agent (e.g., a software agent)
forming a part of an institutional agent (e.g., a company). However, we may
allow that aninternal agent makesits own prioritization decisions, which could
also be viewed as akind of autonomy. We thus understand an internal software
agent asakind of communi cating decision-support system that makesdecisions
or proposes them to ahuman user based on theinformation retrieved from other
enterprise systems of the company.

The AOR Modelling Language

AORML is used as the main graphical description for work products of RAP/
AOR. Wethus describe it first as a prelude to our use of it in the methodol ogy
itself.

AORML is based on an ontological distinction between active and passive
entities, that is, between agentsand (non-agentive) objectsof thereal world. The
agent metaphor subsumes artificial (software and robotic), natural (human and
animal), and social/institutional agents (groups, organizations, etc.).

InAORML, an entity isan agent, an event, an action, aclaim, acommitment, or
an ordinary object. Only agents can communicate, perceive, act, make commit-
ments, and satisfy claims. Objects are passive entitieswith no such capabilities.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

286 Taveter & Wagner

In addition to human and artificial agents, AORML also includesthe concept of
institutional agents, which are composed of a number of other agents that act
ontheir behalf. Organizationsand organizational unitsareimportant examplesof
institutional agents.

There are two basic types of AOR models: external and internal models. An
external AOR model adopts the perspective of an external observer who is
looking at the (prototypical) agentsand their interactionsin the problem domain
under consideration. In an internal AOR model, we adopt the internal (first-
person) view of a particular agent to be modelled. While a (business) domain
model correspondsto an external model, adesign model (for aspecific agentified
information system) corresponds to an internal model that can be derived from
the external one.

Figure 3 shows the most important elements of external AOR mental state
structure modelling. In order to restore compatibility with the diagram notation
of UML 2.0 (OMG, 2003b), the graphical shape for an agent type has been
changed in this chapter from a round-cornered rectangle, which has been used
previously but whichisnow the UML symbol for an action/activity, to the shape
shown in Figure 3 (see also the agent types Buyer and Seller in Figure 4). In
AORML, we have overloaded this shape, which stands for a “subsystem” in
UML 2.0 (OMG, 2003b), with a different semantic by using it as a graphical
symbol for the <<AgentType>> stereotype of the base class Class of UML. In
other words, an agent typeisviewed asa UML classinstead of a“subsystem.”

An external AOR diagram, as represented in Figure 3, depicts the agent types
and instances (if applicable) of a problem domain, together with their internal
agent typesandinstances, their belief sabout objectsand external agents, andthe
relationships among agents and/or objects.

Figure 3. The core mental state structure modelling elements of external
AOR diagrams

e -
sends K "
Agent R) Message Type i
i Lo =i
Type : :
External X s IO !
Object Type receives
Internal Non-Communicative
PR LR RN X Object Type does / Action Event Type !
" Commitment/Claim | !
Type L !
- } perceives
T
Action Event Type i -
> on Event b > e 1 Non-Action
perceives Event Type

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 287

As has been shown by Wagner (2003b), mental state structure modelling in
AORML can bedefinedasaUML Profile, thatis, it isaconservative extension
of UML class modelling.

Accordingto Figure 3, thegraphical notation of AORML distinguishesbetween
an action event type and a non-action event type and between a communica-
tive action event (or message) type and a non-communicative action event type.
Figure 3 also reflects that a commitment/claim type is coupled with the action
event typewhoseinstancefulfillsthe corresponding commitment (or satisfiesthe
claim). Please notethat for the sake of simplicity, in AORML, acommunicative
action event isidentified with amessage whilein the UFO-C ontol ogy depicted
in Figure 1 they form different categories.

The most important behaviour modelling elements of AORML are reaction
rules, which are used to express interaction patterns. In symbolic form, a
reaction rule is defined as a quadruple €, C — «, P where € denotes an event
term (the triggering event), C denotes a logical formula (the mental state
condition), o denotes an action term (the triggered action), and P denotes a
logical formula (specifying the mental effect or post-condition).

Asisshowninthelegend of Figure4, areactionruleisvisualized asacirclewith
incoming and outgoing arrows drawn within the agent rectangl e whose reaction
pattern it represents. Each reaction rule has exactly one incoming arrow with a
solid arrowhead that specifies the triggering event type. In addition, there may
be ordinary incoming arrows representing mental state conditions (referring to
corresponding instances of other entity types). There are two kinds of outgoing
arrows. one for specifying mental effects (changing beliefs and/or commit-
ments) and onefor specifying the performance of (physical and communicative)
actions. An outgoing arrow with adoublearrowhead denotesamental effect. An
outgoing connector to an action event type denotesthe performance of an action
of that type.

As an example, Figure 4 shows an interaction pattern diagram that specifies
the reaction rule R1 for a Seller's behaviour in response to perceiving a
communicative action event of the type request PurchaseOrder. Both the mental
state condition and mental effect of the reaction rule are presented as expres-
sions in the Object Constraint Language (OCL) of UML 2.0 (OMG, 2003b)
attached to the corresponding arrows. The pre-condition for providing the Buyer
with the requested product isthe availability of the Productitem whose checking
intheinternal database of the Seller is specified with the help of the correspond-
ing status predicate isAvailable and the OCL expression productlD =
globalProductldentifier. The post-condition representing the mental effect is
expressed as inventory = inventory@pre - requestedQuantity. The post-condition
affects the representation of the corresponding Productitem in the Seller's
internal database by decreasing itsattributeinventory by thevalue of theattribute
requestedQuantity of the message received.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

288 Taveter & Wagner

Figure 4. An interaction pattern: when receiving a PurchaseOrder, the Seller
provides the Buyer with a product according to the PurchaseOrder if there are
products available.

Buyer Seller

e — inventory =
~request PurchaseOrder. inventory@pre -

\ requestedQuantity
JglobalProductidentifier / productiD =

/_ _requestedQuantity ,

_— provideProduct
(PurchaseOrder)

globalProductldentifier

Product
Item
productID
outgoing inventory
o message ; _
action w‘ o triggering isAvailable
mental event
effect mental
state
condition

The RAP/AOR Viewpoint Modelling Framework

TheRAP/AOR viewpoint modelling framework describedin Table 1isbased on
the perspectives of agent-oriented business modelling proposed by Taveter
(2004a) whichis, inturn, rooted in the ideas of the Zachman framework (Sowa
& Zachman, 1992). The RAP/AOR viewpoint modelling framework isalsowell-
aligned with the MDA (http://www.omg.org/mda/) framework of OMG. It
consistsof amatrix with threerowsrepresenting different abstractionlevelsand
three columns representing the viewpoint aspects interaction, information, and
behaviour. Each cell in this matrix represents a specific viewpoint, such as
Conceptual Interaction Modelling, Computational Information Design, or
Behaviour Implementation.

Intheliterature, the concept of viewpoints hasbeen used differently in different
approaches. For example, the MDA definesonly threeviewpoints: computation-
independent modelling (CIM), platform-independent modelling (PIM), and pl at-
form-specific modelling (PSM). We consider these viewpoints as viewpoint
dimensions and call them abstraction levels. Another approach, the Reference
Model for Open Distributed Processing (RM-ODP) (Putnam & Boehm, 2001)
definesfive viewpoints. The correspondences between the MDA and RM-ODP
viewpoints and the Zachman and the RAP/AOR viewpoint modelling frame-
works are summarized in Table 2.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes

289

Table 1. The RAP/AOR viewpoint modelling framework

Viewpoint models Viewpoint aspect

Abstraction level Interaction I nformation Behaviour

Conceptual AOR Agent Diagrams, UML Use | AORAgent | AOR Interaction Pattern

Domain Modelling | Case Diagrams, AOR Interaction Diagrams Diagrams, Goal-Based
Frame Diagrams, AOR Interaction Use Case Models,
Sequence Diagrams AOR Activity Diagrams

Platform- UML Use Case Diagrams, AOR AOR Agent | AOR Reaction Pattern

Independent Reaction Frame Diagrams, User Diagrams Diagrams, AOR Internal

Computational Interface Design Models, Security Activity Diagrams

Design Models

Platforma)_eqflc UML Deployment Diagrams UM L Class UML Class Diagrams

Implementation Diagrams

Table 2. RAP/AOR stakeholders and the corresponding viewpoint names in
other frameworks

Abstraction level Audience/Stakeholders Viewpoint Names
MDA RM-ODP Zachman

Conceptual owners/customers, users, domain | CIM Enterprise Rows 1+2
Domain Modelling | experts
Computational systems anaysts, software PIM Information + Row 3
Design architects Computational
I mplementation programmers, database PSM Engineering + Rows 4+5

implementers, system integrators Technology

Normally, in a software engineering project, one or more views are created for
each viewpoint, using therespective modelling language(s). A viewisadiagram
or amodel of another kind, like atabular use case or atextual description. Thus,
a viewpoint-modelling framework defines the collection of engineering docu-
ments created and used in a software engineering project. In the following, we
briefly describe different viewpoints of the framework

Domain-Interaction Viewpoint

The domain-interaction viewpoint (Column 1in Table 1) concernsthe analysis
and modelling of active entities, that is, of agent types and instances and
relationships, as well as the interactions and communication between them.
The domain-interaction viewpoint comprises organization modelling. The pur-
posesof organization modelling aretoidentify:

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

290 Taveter & Wagner

a) theorganization(s) of the problem domain;

b) the relevant organizational units that of which each organization to be
modelled consists;

c) theroles®included by the organizational units; and
d) thetypes of relationships occurring between these agent types.

AccordingtoZambonelli, Jennings, and Wool dridge (2001), among thefivetypes
of relationships that can be identified between institutional agent types and/or
role types, control, benevolence, and dependency relationships are the most
relevant ones to modelling interactions between agents. Control relationships
identify the authority structures within an organization. Benevolence relation-
ships identify agents with shared interests. Dependency relationships exist
between agents because of resource restrictions where the depender depends
on the dependee for the availability of a physical or an informational resource.
For example, in Figure 5 there is the isBenevolentTo relationship between
instances of the role types Seller and Buyer.

The domain-interaction viewpoint is described with the help of four views:

AOR Agent Diagrams;

UML Use Case Diagrams;

AOR Interaction Frame Diagrams; and
AOR Interaction Sequence Diagrams.

A w DR

Types of organizational units and roles can be represented by AOR agent
diagrams where different agent types may relate to each other through the
relationships of generalization and aggregation. An AOR agent diagram
depicts the agents and agent types of a problem domain, together with their
internal agents and agent types and the relationships among them. An agent
diagram, like the one shown in Figure 5, includes all agent (role) types of a
business domain. An important purpose of an agent diagram is to describe all
stakeholdersthat are involved in the business processes to be supported by the
socio-technical business system and to give an overview of the business system
viewed as an MAS.

A use case is defined as the specification of a sequence of actions, including
variants, that a system (or other entity) can perform, interacting with actors of
the system (OMG, 2003b). Since the system is itself an actor* (Cockburn,
1997a), themodel of interaction between an“actor” and a“ system” of ause case
can also be applied in agent-oriented modelling. A UML use-case diagram, for
example, the diagram represented in Figure 6, shows the relationships among

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

291

Towards Radical Agent-Oriented Software Engineering Processes

Figure 5. The agent diagram of the domain of business-to-business electronic

commerce

Buipuads!

PIGONS!

apoosniels
wiayauriaond

JoyuspRINPO.deqolB
apopuoseay
-uonNIsgNS1oNpPoIdedold

80UBIBJ1oNPOId
|anusans

80ldun

Jaynuapponpoidiedolt
9PODRINSESNJOUUNINPOIHIE]OlD
Anuendpaisenbai
2|qfeIda00yIoNPOIRINIASINSS!

Buipuads!

junounywis}aurfelo}

alays!

apoDsniels
LB}BUIIONPOI

wayjeurieaiony] | T

we)|
Jonpoid

—

wiayaurisond

aregasuodsaypaisanbai

20O

—

Wby
arewyjos

JUNOLL/S2I0AU| [0}
3pODSULLIB | UsWAedeqolb

WnooovoLllg [o

80l0AU|

ABI0

BlleS

=)
waanpold
i)
1

s |

Waby

<0 JUSJONLISGSE>:

i

jsle]

—
=
(1]

JaynuappoNPoIdeqolb
apopuoseay
-uonnisgnsIoNpoidredold
90UBJ8jeH1oNPoId
anusans

20lduun

Anuendpaddiys
JayuspINPO.deqolB
I9pODINSEANJONUNIONPOIRA0ID
30ldHuNpaIsanbal
Apuendpaisenbal

WaYBUITIoNPOId

UoIFeLLYLOD/J8pI0aseydInd

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

292 Taveter & Wagner

Figure 6. A use case diagram showing the types of interactions between
agents of the types Buyer and Seller

Seller

/

Buyer

Figure 7. The interaction frame between agents of the types Buyer and Seller

Buyer Seller
y Crm -

e request]
7 RFQ/Quote :
R e W,
\ RFQIQuote
e

N ._.._.._.._.._.._.} PurchaseOrder/ ._.._.._.._.._.._ —
£.._Confirmation _/

..._._.._.._._.._.._.\“ PurchaseOrder/ i cmmmmemce
Confirmation _ *y

\ (PurchaseOrder)

“\
Lo provideProduct
(PurchaseOrder)

[T T -
I request Co
A\ Invoice -
e A

payForProduct
(Invoice)

payForProduct
(Invoice)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 293

actors and the subject (system) and use cases (OMG, 2003b). The use cases
representedinthedomaininteraction viewpoint are businessuse cases(Cockburn,
2001), because they summarize the types of interactions between a customer,
which can be ahuman agent or an institutional agent, and the business, whichis
aninstitutional agent.

According to Wagner (2003a), an AOR interaction-frame diagram provides a
static picture of the possibleinteractions between two (types of) agents without
modelling any specific process instance. An interaction-frame diagram de-
scribesin moredetail thetypesof interactions summarized by the corresponding
use case. An interaction-frame diagram, like the one represented in Figure 7,
consists of various types of communicative action events, hon-communicative
action events, commitments/claims (coupled with the corresponding types of
action events), and non-action events. Agents of the problem domain share the
entity types mentioned.

An AORinteraction-sequence diagram, like the one shown in Figure 8, depicts
(some part of) a prototypical instance of an interaction process. An interaction

Figure 8. An interaction sequence between the agent instances BuyerA and
SellerB

BuyerA SellerB

request RFQ/Quote

. globalProductIdentlfler £

Lo 1247 _ .
\ REQ/Quote

._A._.._.._.._.._.._.._.._.._.'} PurchaseOrder/ ._.._A._.._A._ R
Confirmation /'

fomom oo PurchaseOrder/ — fe-mmmmimommenmd
Confirmation N

provideProduct
(PurchaseOrder)

Dl

request A
Invoice g

D—aym
(Invoice)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

294 Taveter & Wagner

process is a sequence of action events and non-action events, performed and
perceived by agents and following a set of rules (or protocol) that specifiesthe
type of the interaction process. Agents may interact with their inanimate
environment or they may interact with each other.

Domain-Information Viewpoint

Representing the domain-information viewpoint (Column 2 in Table 1) for the
focus organization(s) can be regarded as creating a domain ontology that
providesacommon framework of knowledgefor theagentsof the organization(s)
and external agents connected to the organization(s). Each agent of the problem
domain can seeonly apart of theontol ogy; that i s, each agent viewsthe ontol ogy
from a specific perspective.

Thedomain-information viewpoint isdescribed withthe hel p of oneviewv—AOR
Agent Diagrams.

In addition to describing agent types, an AOR agent diagram, like the one
represented in Figure 5, describes object types of the problem domain, as well
astheir relationships to agent types and with each other. Each agent has beliefs
aboutitsinternal agents, aboutits” private” objects, and about all external agents
and shared objects that are related to it.

Domain-Behaviour Viewpoint

Thedomain-behaviour viewpoint (Column 3in Table 1) addressesthemodelling
of an agent’ sfunctionality (what functionsthe agent hasto perform), aswell as
of the agent’ s behaviour (when, how, and under what conditionswork hasto be
done). Inthe model sof the domai n-behaviour viewpoint, amodeller may abstract
away from particular internal agent types, like SoftwareAgent in Figure 5, and
create model s of behaviour for the corresponding institutional agent types, like
Buyer and Seller in Figure 5. The domain-behaviour viewpoint is described with
the help of three views:

1. AOR Interaction-Pattern Diagrams;
2. Goal-Based Use Case Models; and
3. AOR Activity Diagrams.

AOR interaction-pattern diagrams, like the one depicted in Figure 4, focus on
general interaction patterns expressed by means of a set of reaction rules
defining an interaction process type. In an interaction-pattern diagram, the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 295

actions performed by one agent may be, at the same time, the events perceived
by another agent. Figure 4 demonstratesthat an interaction-pattern diagram can
visualize the reaction chains that arise by one reaction triggering another.
However, for adequate modelling of business processes, interaction-pattern
diagrams are not sufficient because they do not allow modelling of action
sequences. For thisreason, we will introduce activities as a glue to connect the
actions of an agent within a business process to each other.

Actor types (or agent role types) are always characterized by goals because,
as noted by Kueng and Kawalek (1997), “human activity isinherently purpose-
ful”. Inabusinessdomain, ahuman or aninstitutional agent acting intherole of
a“customer” hasagoal of having something accomplished. To achieveitsgoal,
the agent uses some service provided by another agent. An agent’s autonomy
implied by a benevolence relationship between the service provider and a
service requester means that the service provider performs the service re-
guested if itisableto do so, but the service provider also hasan optionto refuse
the service request. Even though the agent requesting the service may not
explicitly communicateits goalsto the service provider agent, the latter always
“internalizes” thewholeor apart of the customer’ sgoal in an attempt to provide
the service. For example, assuming that a customer has a goal of renting a car,
the goal of acar rental company isto provide the customer with acar, whichis,
of course, asubgoal of the company’ shigher level goal—to earn money through
renting cars. The car rental company tries to achieve this higher level goal by
“internalizing” as many customer goals as possible.

The “internalizations” of the goals of customers by service providers can be
modelled in different ways. For example, in the i* framework proposed by Yu
(1995), a customer’s goal can be captured by representing a goal dependency
where a depender (i.e., a customer) depends on the dependee (i.e., a service
provider) to bring about a certain state in the world. In the same framework,
setting and achieving of the corresponding internal goal by the dependee can be
modelled through a means-ends link, indicating a relationship between an
internal goal to be achieved and a means for attaining it, which is usually
performing a task (activity). As another example, in the KAOS framework
described by Lamsweerde (2003), goals of agents are “operationalized” into
specifications of services to be performed by an agent.

Inour approach, wecapturethegoal sof “ customers” andtheir “internalizations”
by service providers by employing goal-based use case models. Use cases as
such were originally introduced by Jacobson (1992). Cockburn (1997a, 1997b)
proposed an extended version of use cases that he calls “ use cases with goals.”
Heelaborated goal -based use casesin Cockburn (2001). Whileagraphical UML
use-case diagram in the domain-interaction viewpoint summarizes types of
interactions between an external actor and the focus agent (the “system”), a
tabular goal-based use case models the behaviour of the focus agent.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

296 Taveter & Wagner

Table 3. A goal-based use case for the business process type “ Process the
request for a quote”

USE CASE 1 Process the request for a quote.
Goal of the To receive from the seller the quote.
Primary Actor

Goal of the Focus | To provide the buyer with the quote.

Actor

Scope & Level Seller, primary task.

SuccessEnd The buyer hasrecelved from the seller the quote.
Condition

Primary Actor Buyer.

Secondary Actors

Triggering event A request for a quote by the buyer.

DESCRIPTION Step [Action
1 Check and register the availability of the product items included in the
reguest for a quote.
2 Send the quote to the buyer.

A goal-based use case, such as the use case represented in Table 3, consists of
aprimary actor, the system under discussion, and a secondary actor. We will
call the system under discussion the actor in focus. In the domain-behaviour
viewpoint, where use cases describe the types of an organization’s business
processes, the actor in focus is the organization itself or an organization unit.
According to Cockburn (2001), the external primary actors are the actors
whosegoal sthe organi zationisto satisfy. They includethe company’ scustomers
and perhaps their suppliers. The external primary actors form a part of the
company’s stakeholders that includes the company shareholders, customers,
vendors, and government regulatory agencies. A secondary or a supporting
actor is an external actor that provides a service to the agent in focus, so that
the latter could achieveits goals. In parallel with the identification of primary
actors, the triggering events created by them to which the organization must
respond should beidentified (Cockburn, 2001).

Internal and external actors in goal-based use cases straightforwardly corre-
spondtointernal and external agentsin AOR modelling. Accordingto Cockburn
(1997a), each actor has a set of responsibilities that have been assigned to it
by external authorities. To carry out thoseresponsibilities, it setssomegoals. An
agent’s responsibility is realized as an activity that the agent performs in
response to perceiving an event of the corresponding type. The relationship
between an agent’s responsibilities, goals, and activities is illustrated by the
RAP/AOR metamodel fragment shown in Figure 9.

Anactivity isdefined using workflow terminol ogy asan uninterruptible amount
of work that is performed in anon-zero span of time by an actor (Eshuis, Jansen,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes

297

Figure 9. The relationship between an agent’s responsibilities, goals and

0.*

activities
o 1 ! has>
Event |—<perceives— Agent 1
1.* 2 1
triggers> <raises jncludes> has>
1 0. JE 0.*
Reaction 1 0 Agent
| .. Lx P
——starts>— Activit 1 <implies— Responsibili
Rule 1 0.1 y L has> Goal P P y
1
B 1]

<is realized as

& Wieringa, 2002). Each activity belongsto some activity type. An activity type
(or task in Yu [1995]), like “Manage quoting,” is defined as a prototypical job
function in an organization that specifies a particular way of doing something
(Yu, 1995). It seems natural to allow specifying the start of an activity in the
action part of areaction rule. In other words, an instance of an activity typeis
created by means of areaction rule in response to perceiving an event, whichis
also reflected by the RAP/AOR metamodel fragment represented in Figure 9.
Wedefinean AOR activity diagram, like the one shown in Figure 10, by making
the definition provided in UML 2.0 (OMG, 2003b) slightly more precise as a

Figure 10. An incomplete model of the quoting business process type from
the perspective of Seller

Buyer

T -,

R request
7 RFQIQuote

— inform
\, RFQ/Quote

Seller

Manage quoting
(q : Quote)
=}

Process product items
(9 : Quote)
Confirm quote
- (g : Quote)

N ——

g.quotelLineltem.forAll->
(quoteLineltemStatusCode.isBid or
quoteLineltemStatusCode.isNoBid)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

298 Taveter & Wagner

specification of parameterized behaviour that isexpressed asaflow of execution
viaasequencing of subordinate activitieswhoseprimitiveelementsareindividual
epistemic, physical, and communicative actions. As Figure 9 reflects, there are
two activity border events (start-of-activity and end-of-activity) implicitly
associated with the beginning and end of each activity. An activity border event
startseither asubactivity or asubsequent activity or triggersareactionrule. The
start-of-activity event type is graphically represented by an empty circle with
theoutgoing arrow to the symbol of the subactivity typeor internal reactionrule.
The end-of-activity event typeisvisualized by drawing atriggering arrow from
the activity-type symbol to either the symbol of the next activity type or to the
symbol of the reaction rule triggered by an activity of the corresponding type.

Thegoal tiedto an activity isdefined asacondition or state of affairsintheworld
that the agent would like to achieve (Y u, 1995). When a goal-based use caseis
transformed into an activity diagram, the goal of the focus actor of the use case
isattached to the diagram’ s outermost activity. The pre-condition of an activity
is a necessary condition that must be true when the activity is started. Pre-
conditionsand goalsmay refer to statusor intensional predicatesof entity types.
They are defined for activity types by means of OCL.

Viewpoints of Design

Asexplainedinsection“The AOR Modelling Language,” aninteracting system
(or agent), as a subject in its domain, does not have an objective but rather a
subjective view of the domain. This is reflected in RAP/AOR by a computa-
tional-design model, inwhichtheinternal (subjective) perspective of thesystem
to bebuilt isadopted, in contrast to the external (objective) perspective adopted
in aconceptual-domain model. For instance, in the transformation of adomain-
information model into an information- design model for a specific agent, the
objective term action event is mapped onto the two indexical subjective terms,
action (if performed by the agent under consideration) and event (if performed
by other agents). Likewise, the objective term message is mapped onto the two
subjective terms, incoming message and outgoing message. This mapping is
also called internalization in RAP/AOR.

External models of the conceptual -domain modelling level arethustransformed
intointernal modelsof thelevel of platform-independent computational design.
Inparticular, AOR agent diagramsarerefined into more detail ed agent diagrams
and business use cases are turned to system use cases. Analogously, AOR
interaction-frame diagrams are mapped to reaction-frame diagrams, AOR
interaction-pattern diagrams to reaction-pattern diagrams, and AOR-activity
diagramsto internal-activity diagrams.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 299

The Role of Simulation in the RAP/AOR M ethodology

We have shown in Wagner and Tulba (2003) that, with some minor extensions,
AOR models can be used for a certain form of agent-based discrete event
simulation called Agent-Object-Relationship Simulation (AORS). In RAP/
AOR, we employ AORSfor achieving more agility in the software engineering
process by getting feedback from the execution of models before they are
implemented in atarget technology platform.

AORSallowsanimating and testing both AOR domai n-interaction and behaviour
models and AOR interaction and behaviour design models.

As has been shown in Taveter (2004a), simulation of behaviour models is
facilitated by the executability of complete and incomplete AOR activity
diagrams. An AORS system, for exampl e, theimplementation describedin Luin,
Tulba, and Wagner (2004), includesan environment simul ator that isresponsible
for simulating exogenous events and the causality laws of the physical environ-
ment. Other actors of the problem domain can be simulated with variousdegrees
of realism.

The Core Disciplines of the RAP/AOR M ethodology

The seven core software engineering disciplines of RAP/AOR, based on those
of RUP, are:

Domainmodelling;
Requirementsengineering;
Design;

Simulation;
Implementation;

Test; and

Deployment.

N o gk wbdpR

Thefirst three disciplines listed above can be represented as the following task
sequence divided between different viewpoints:

1. Domain-interactionviewpoint:

1.1. Model agent typesand instances of the problem domain and rel ation-
ships between them by using an AOR-agent diagram.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

300 Taveter & Wagner

1.2. Model possible interaction types between agents of the problem
domain by UML use cases.

1.3. Refine possible interaction types between agents of the problem
domain by AOR interaction-frame diagrams.

1.4. Model prototypical interaction processes of the problem domain by
AOR interaction-sequence diagrams.

2. Domain-behaviour viewpoint:

2.1. Model thebehavioursof agentsof the problem domain by goal-based
use cases.

2.2. Model the behaviours of agents of the problem domain by AOR
reaction- pattern diagrams (optional).

2.3. Transform goal-based use cases into AOR-activity diagrams.

2.4. Refine AOR-activity diagrams by more detailed behavioural con-
structs.

2.5. Complement goal-based use cases by the elements corresponding to
the behavioural constructsintroduced.

3. Domaininformationviewpoint:

3.1. Model object typesand instances of the problem domain and rel ation-
ships between them by using an AOR-agent diagram.

4. Designinteraction, behaviour, andinformation viewpoints:

4.1. Turn AOR interaction-frame diagrams into AOR reaction-frame
diagrams.

4.2. When needed, complement A OR-reaction framediagramswith user-
interface design models and security models.

4.3. Turn AOR interaction-pattern diagrams into AOR reaction-pattern
diagrams (optional).

4.4. Turn AOR-activity diagramsinto internal AOR-activity diagrams.

4.5. Refine AOR-agent diagrams of the conceptual domain-modelling
level into AOR-agent diagrams of the computational-design level.

In large development projects, there will be a team for each of the seven
disciplines stated above.

The Phases of a RAP/AOR Development Project

Jacobson, et al. (1999) and Kruchten (1999) have pointed out that a software
development project has two dimensions: the temporal sequence of project

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 301

Table 4. Project phases with predominant software engineering disciplines

Project Phase Predominant Disciplines
Inception domain modelling & requirements engineering
Elaboration design & simulation
Construction implementation & test
Transition deployment

phases, and the composition of the overall development process of analysis,
design, simulation, implementation, and test activities carried out iteratively in
each phase. In RAP/AOR, we follow the distinction between four project
phases: inception, elaboration, construction, and transition, each of which
hasone or two predominant software engineering disciplinesaccordingto Table
4. Animportant topic of our futurework isaligning the phases of the RAP/AOR
development project with the Software Process Engineering M etamodel Speci-
fication (SPEM, 2002) so that aphasewoul d beaspecialization of WorkDefinition
such that its precondition definesthe phase entry criteriaand itsgoal definesthe
phase exit criteria.

Case Study

Our case study is about the business process type of quoting in business-to-
business electronic commerce that is based on the RosettaNet standard (http:/
/www.rosettanet.org/). The RosettaNet’s “Request Quote” Partner Interface
Process® (PIP) enables abuyer to request a product quote from a provider and
aprovider to respond with aquote. The pricesand product availability reflected
in aquote may be influenced by an existing or potential relationship between a
buyer and provider. We now discuss the conceptual modelling of this problem
domain in terms of the RAP/AOR viewpoint modelling framework. We also
briefly address the computational design of a business-to-business process
automation system for the problem domain.

The Interaction Aspect

Atthelevel of conceptual domain modelling (Row 1in Tablel), theinteraction
aspect (Column 1 in Table 1) is captured by conceptual AOR- interaction
model sthat arerepresented by using thefollowing views: AOR-agent diagrams,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

302 Taveter & Wagner

UML use-case diagrams, AOR interaction-frame diagrams, and AOR interac-
tion-sequence diagrams.

At thelevel of computational design (Row 2 in Table 1), the interaction aspect
is captured by AOR reaction-frame diagrams.

The agent diagram of Figure 5 represents the agent role types Buyer and Seller
of thecasestudy, withtheir respectiveinternal agent typesClerk and SoftwareAgent.
For simplicity, other relevant agent types like Bank have been omitted in the
figure. There is the isBenevolentTo relationship between instances of the role
types Seller and Buyer in Figure 5. Thisrelationship typically appears between a
service provider and requester.

A use-case diagram as depicted in Figure 6 summarizesthetypesof interactions
between two agents of the type Buyer and Seller, which act as a service requester
and provider, respectively. Interactions between a service requester and pro-
vider are further refined in the interaction-frame diagram in Figure 7, which
covers the business process types of quoting, ordering, and invoicing between
instances of the agent role types Buyer and Seller The interaction frame
represented in Figure 7 contains types of communicative action events (mes-
sages) such as request PurchaseOrder/Confirmation, which is used for ordering,
non-communicative action event typeslike provideProduct, and types of commit-
ments/claims coupled with them. Each communicative action event type is
prefixed by one of two functions of message types®: request, by which a sender
requeststhereceiver to performacommunicative or physical action or both, and
inform, which identifiesacommunicative action performed inreply to arequest
or independently.

Interaction-frame diagrams may be complemented by interaction-sequence
diagrams, which depict prototypical instances of interaction processes. The
interaction- sequence diagram in Figure 8 represents instances of the business
processtypes of quoting, ordering, and invoicing between the agents BuyerA and
SellerB.

Aninteraction-frame diagram of the conceptual domain-modelling level can be
turned into areaction-frame diagram of the computational-design level by the
process of internalization, which was briefly described in an earlier
section,” Viewpoints of Design.” In that process, the external AOR model is
transformed into an internal AOR model for the (type of) focus agent for which
an agentifiedinformation systemisto bedevel oped (typically an organi zation or
an organizational unit). For example, Figure 11 represents the reaction frame
created for an instance of the agent role type Seller. This model has been
obtained from the interaction frame shown in Figure 7.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 303

Figure 11. The reaction frame for an agent of the type Seller

Seller

Buyer i

A request :
RFQ/Quote |

inform

request |
- e PurchaseOrder/
] Confirmation

—4 PurchaseOrder/ .
Confirmation '

provideProduct
(PurchaseOrder)

I provideProduct
(PurchaseOrder)

request
Invoice |

payForProduct
(Invoice)

payForProduct
(Invoice)

The Information Aspect

Atthelevel of conceptual-domainmodelling (Row 1in Tablel), theinformation
aspect (Column 2 in Table 1) is captured by conceptual AOR information
models, which are represented by AOR agent diagrams.

The conceptual-information model of the problem domain of business-to-
business electronic commerce is represented in the agent diagram in Figure 5.
The figure shows that the object types PurchaseOrder/Confirmation, RFQ/Quote,
and Invoice are shared between agents of the types Buyer and Seller, while the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

304 Taveter & Wagner

object types ProductitemOfSeller and Productltem are represented exclusively
within agents of the types Buyer and Seller, respectively. It is important to
emphasize herethat ashared object typedoesnot imply that all the agentswhose
types are connected by an association to it have the same beliefs about it, or, in
other words, that there is a common extension of it shared by all agents. For
example, different instancesof theagent roletypeBuyer in Figure5 hold different
sets of instances of RFQ/Quote.

Instances of the object type Seller within an instance of Buyer represent
information about the corresponding i nstances of theagent type Seller. An object
of the type QuoteLineltem in Figure 5 satisfies one of the following status
predicates: isBid, isNoBid, and isPending, while an object of the type
ProductLineltem represented in the same figure is characterized by the status
predicate isAccept, isReject, or isPending.

At thelevel of computational design (Row 2in Table 1), theinformation aspect
iscaptured by detailed AOR-agent diagramsthat include, for example, thetypes
of attributes and the identifiers for agent and object types.

The Behaviour Aspect

While the interaction aspect deals with the communication and interactions
between the agents, the behaviour aspect (Column 3 in Table 1) addresses the
agents' reactions to the communicative and non-communicative action events
and non-action events perceived by them. At the level of conceptual modelling
(Row 1 in Table 1), the behaviour aspect is captured by the conceptual AOR
behaviour models that are represented by means of the following views: AOR
interaction-pattern diagrams, goal-based use-case models and AOR-activity
diagrams.

Atthelevel of computational design (Row 2in Table 1), the behaviour aspectis
captured by AOR reaction-pattern diagrams and AOR internal-activity dia-
grams.

Figure 4 serves as an example of an interaction-pattern diagram specifying the
reaction rule R1 for a Seller’ s behaviour in response to perceiving a communi-
cative action event of the type request PurchaseOrder.

A goal-based use case can be triggered by an internal or external actor. For
example, the use case “Issue a request for a quote” with the buyer in focusis
triggered by the buyer’ sinternal actor “clerk,” while the use case “Process the
request for aquote” presented asan examplein Table 3istriggered by receiving
a request from a buyer for a quote. The use case (“Process the request for a
guote”) in Table 3ismodelled from the perspective of abuyer with the sellerin
focus (scope), which means that the goal of the use case is the so-called user

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 305

goal, the goal of the actor (i.e., abuyer) trying to get work (primary task) done
(Cockburn, 1997a). The buyer istherefore the external primary actor of the use
case. Since the goal of the primary actor is“internalized” by the actor in focus,
unlike Cockburn, we also include the goal of the focus actor in agoal-based use
case, asis reflected by Table 3.

As shown in Taveter (2004a), a goal-based use case can be straightforwardly
turned into sequences and hierarchies of activity types whose instances are
performed by an agent. For example, an activity diagram as shown in Figure 10
corresponds to the use case represented in Table 3. In the figure, an activity of
the type “Manage quoting,” which is visualized as aroundtangle, is started by
reaction rule R1 in response to receiving a message containing a request for a
guote. Asshownin Figure 10, an activity of thetype“Manage quoting” consists
of sequential subactivities of the types “ Process product items” and “ Confirm
quote.”

For each activity type represented in Figure 10 can be defined the goal that its
instancestry to achieve. The goal defined for the outermost activity type, which
is“Manage quoting” in Figure 10, corresponds to the focus actor’ s goal of the
respective goal-based use case. For example, the goal of an activity of the type
“Process product items” is represented informally as “For each product item
included by the request for aquote is known whether it isto be bid or not.” This
goal can beformalized by meansof OCL intermsof theinput parameter declared
for the corresponding activity type, as is represented in Figure 10. Input
parameters defined for activity types represent the dataflow through the
activities.

Next, activity diagrams obtained from goal-based use cases are elaborated by
introducing into them behavioural constructs by means of reaction rules.
Taveter (2004a) has shown that AORML extended by activity modelling allows
the representation of 16 out of 19 behavioural workflow patterns as defined in
thebenchmark proposal of Workflow Patterns (2003). The compl ete behavioural
model of the quoting business processtypefrom the perspective of theagent role
type Seller is represented in Figure 12. As the figure shows, the behavioural
model shownin Figure 10 hasbeen complemented by the behavioural constructs
of thetypes“ For-eachloop” and “ Starting an activity by means of two (or more)
events.” Inaddition, elementary epistemic, physical, and communicative actions
that make up the activity types “Process product item” and “Confirm quote’
have been specified.

According to the behavioural construct of the type“For-each loop” represented
in Figure12, uponthestart of an activity of thetype* Processproduct items,” its
subactivity of thetype*“ Process product item” is performed for each instance of
the object type QuoteLineltem for which the pre-condition quote = g evaluates to
true. The pre-condition limitsthe set of QuoteLineltems for which the subactivity

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

306 Taveter & Wagner

is performed to those bel onging to the instance of Quote that isidentified by the
value of the input parameter q. When all subactivities of the type “Process
product item” have ended, the enclosing activity of the type “Process product
items” also ends.

Thesubactivity “ Processproductitem” in Figure 12 checkstheavail ability of the
given product item that is specified by the input parameter item of the type
QuoteLineltem. If the product item corresponding to theinstance of QuoteLineltem
is available in the quantity requested, the status of the QuoteLineltem is set to
isBid. In the opposite case, the status of the QuoteLineltem is changed to isNoBid.
In both cases, the attributes of the QuoteLineltem are updated accordingly.

Figure 12. The complete behaviour model of the quoting business process
type from the perspective of Seller

Buyer Seller

e — t. -
,,,,,,,,, . request | S - c
7 RFQIQuote . ’Q

e ————— -
Manage quoting

(9 : Quote)
Q

- uote
Process product items Q

(9 : Quote)

QuoteLineltem

@ QuoteLineltem

StatusCode
R2 {quote = q} isBid k

‘
Process product ‘
(item:
QuoteLineltem) U
i
i
i
i

Q

U
L/
i Productltem
{isAvaflable productiD
| (item.requestedQuantity) and| unitPrice
produgtiD = itemsAvailable

f item.globalProgluctidentifier} isAvailable
| (Integer)
Clerk
approveQuote

Confirm quote
(9 : Quote)

Q

et =
77777777 B intorm 17 -
\ RFQ/Quote 5 RS

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 307

The behavioural construct of the type “ Starting an activity by means of two (or
more) events’ represented in Figure 12 specifiesthat, upon the end of an activity
of the type “Process product items,” if the agent perceives an approval of the
guote by an internal human agent of the type Clerk, an activity of the type
“Confirmquote” isstarted. Anactivity of thegiventypeisthusstarted only after
eventsof all the specified typeshave occurred. In Figure 12, such eventsarethe
ending event of the previous activity and an approval of the quote by a human
agent instance of the type Clerk.

Since goal-based use cases also serve to document business process types
modelled by activity diagrams, in Table 5, the use case “ Process the request for

Table 5. A goal-based use case for the business process type “ Process the
request for a quote”

USE CASE 2 Process the request for a quote.

Goal of the To receive from the seller the quote.
Primary Actor
Goal of the Focus | To provide the buyer with the quote.

Actor

Scope & Level Seller, primary task.

Success End The buyer has received from the seller the quote.
Condition

Primary Actor Buyer.

Secondary Actors

Triggering event A request for aquote by the buyer.

DESCRIPTION Step | Action
1 For each product item included in the request for a quote: process
product item (Use Case 3).
2 The guote has been approved by the clerk: send the quote to the buyer.

Table 6: The subfunction “ Process product item”

USE CASE 3 Process product item.
Goal of the
Primary Actor
Goal of the To decide bidding of the product item.
Focus Actor
Scope & Level Seller, subfunction.
Pre-conditions
SuccessEnd The bidding of the product item has been decided.
Condition
Primary Actor Buyer.
Secondary Actors
Trigger
DESCRIPTION Step | Action
1 The product item is available in the quantity requested: the product
item isto be bid which is registered in the quote.
EXTENSIONS Step | Branching Action
la The product item is not available in the quantity requested: the product
item is not to be bid which is registered in the quote.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

308 Taveter & Wagner

aquote,” which was originally represented in Table 3, has been complemented
by the <condition> elements corresponding to the behavioural constructs
introduced. Please note that a subfunction® of the primary task “Process the
request for aquote” presented in Table 6 contains the main (success) scenario
(Cockburn, 2001), in which the primary actor’s goal is delivered and all the
stakeholders' interests are satisfied, and one extension scenario (Cockburn,
2001) that starts by stating where it picks up in the main scenario and what
conditions are different.

Simulation

Taveter (2004a) demonstrated that AORML extended by activities is the first
agent-oriented model ling language where partially specified behaviour models
by activity diagrams can be executed. For example, in our case study, an
incomplete conceptual AOR behaviour model of the quoting business process
typerepresented in Figure 10 can be executed, | et alone the compl ete behaviour
model representedin Figure12. Thisfacilitatesiterative businessmodelling that
is the state-of-the-practice. Using executable process models jointly with an
Agent-Object-Rel ationship Simulation (AORS) system, asdescribed in Wagner
and Tulba(2003), permitsthecreation of powerful simulation environments. For
thispurpose, aswell asfor the creation of actual agentified information systems,
the approach of transforming models into implementations described in
the" Implementation and Tools” section can be employed.

| mplementation and Tools

The RAP/AOR methodology complies with the principles of the MDA frame-
work of OMG (http://www.omg.org/mda/). According to the overview of MDA
provided in Klasse Objecten (http://www.klasse.nl/english/mda/mda-
introduction.html), the MDA process defines three steps:

1. First, a model at a high level of abstraction that is independent of any
implementation technology isbuilt. Thisiscalled a Platform Independent
Model (PIM). In the RAP/AOR methodology, the modelslisted in Row 2
of Table 1 form the PIM.

2. Next, the PIM istransformed into one or more Platform Specific Models
(PSM). A PSM istailoredto specify the PIM intermsof theimplementation
constructsthat are available in one specific implementation technol ogy.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 309

3. The final step is to transform a PSM to code. Because a PSM fits its
technology very closely, thistransformation israther trivial. The complex
step isthe one in which a PIM is transformed into a PSM.

In principle, the transformation from a PIM into a PSM can be performed for
each software system to be built (e.g., an agentified information system)
separately. However, in the RAP/AOR methodology, we advocate an approach
where executable AOR models are transformed into equivalent XML-based
representationsthat arethen interpreted and executed by software agents. Inthe
case study of automating business-to-business processes, which we described
inour case study, thisiscrucial because new business processtypes emerge and
old ones frequently change, as a result of which specifications of business
process automation systems are in constant flux.

In order to facilitate generation of XML-based representations of business
process models, we have developed the corresponding XML Schema (http://
www.w3.org/XML/Schema) whaose instances describe business process types
in amachine-interpretable way. By using the schema, it is possible to represent
business process types from different perspectives. For example, the models of
the quoting business processtype created in our case study are transformed into
two XM L -based representati onsthat describe the quoting business processtype
from the perspectives of the agent role types Seller and Buyer.

Figure 13. The business process automation system

Model
business
process Integrated
type 5 Business Process
User User T thde d Editor
extende!
. . AORML (CONE)
Maintainer
T T o
- &
5 @
S23
Interact Interact >§< S S
with agent with agent ~ 2 9
@
Instantiate .
AL business Business Process
“Message process type (..) Interpreter
JADE JADE Interpret
. Representations of
agent ACL et —p_>busmess rocess business process
message > < Invoke agent types

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

310 Taveter & Wagner

In the prototype application represented in Figure 13, inter-organizational
business processtypes are described in the (extended by activities) AORML by
means of the Integrated Business Process Editor. The latter has been developed
as an extension to the COnceptual Network (CONE) Ontology Editor of VTT
Information Technology. Figure 14 shows a snapshot of the model of the
RosettaNet-based quoting business process type that has been created by using
the editor from the perspective of Seller. Please notethat sincethe older version
of AORML was originally defined on the basis of UML 1.5 (OMG, 2003a),
Figure 14 uses the old graphical notations for agents and activitiesin AORML.
Note also that the models represented in Figure 14 are external AOR models —
the process of internalization briefly described in section, “Viewpoints of
Design,” is performed implicitly when subjective XML-representations are
generated from an objective model of a business process type. In other words,
due to the implicit internalization, CIM serves as the starting point instead of
PIM.

Figure 14. The quoting business process type from the perspective of Seller
modelled by the Integrated Business Process Editor

& CONE =]
Ontology Import Export Prolog Browser Help

B=|-|-[¢000¢o]t, =

-ceERSES - @ @

Buyer

sssssssssssssss

Process inei...

(tem: Quatel.. S
.).‘ ProductDat. .
. e
1

e
C o Producttem:Object
R lpraduct |0 String)
ruduct|=ite .globalProductidentit. | ixAvailable

kd
= [¥]
icrosolt W | €8 Eudora by DUALCOMM - | C:NNTSystem32icu. [T cONE RECVE! m) 720 T

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 311

The Integrated Business Process Editor allows graphical descriptions of busi-
ness process types expressed in AORML to be transformed into their represen-
tations in XML. Even though the XML-based representations of a business
process type are generated automatically, as a rule, some manual tailoring of
process-specific interfaces must be performed. This occurs between the
Business Process | nterpreter and enterprise systems of the company. Enterprise
systems can include the Enterprise Resource Planning (ERP), Customer Rela-
tionship Management (CRM), and Enterprise Application Integration (EAI)
systems shown in Figure 13. After the generation and tailoring have been
accomplished, abusiness processtypeisready to beinterpreted by the Business
Process Interpreter, which works in cooperation with the software agent
representing the corresponding party. Thelatter hasbeenimplemented using the
Java Agent DEvelopment Framework (JADE) (http://jade.cselt.it/) agent plat-
form. Agents communicate with each other using messages in the Agent
Communication Language (ACL) defined by FIPA (http://www.fipa.org/),
whichisbased on speech acts (Austin, 1962). AsFigure 13 illustrates, an agent
representing a party first invokes the Business Process Interpreter to read the
description of the business processtype, asrequested by the agent’ shuman user,
andto createitsinternal representation of the business processtype. Thereafter,
when the agent receives a message or “perceives’ an input by a human user
through the Graphical User Interface (GUI), the agent invokes the Business
Process Interpreter to act according to the process type description. When the
Business Process Interpreter acts, it, in turn, invokes the JADE agent and
displays messages through the agent’s GUI.

Strength and Weakness of the
RAP/AOR Methodology

Atpresent, itisdifficult toevaluatethe RAP/AOR methodol ogy, mainly because
some of its components—in particular, certain model transformations and
related tools—have not yet been fully developed. Consequently, alack of tool
support and field testing reportsis aweakness of the proposed methodology at
the time of writing this chapter. On the other hand, the experience gained in the
case study discussed and in implementing the tool support discussedin“Imple-
mentation and Tools” section have been encouraging and lead usto believe that
RAP/AOR isanatural extension of RUP+UML offering higher level modelling
constructs.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

312 Taveter & Wagner

Not supporting the design of proactive behaviour may be seen either as a
weakness or as a strength. It is certainly aweakness from an Al point of view;
however, we consider it to be a strength since the agents we want to design as
components of large-scal e cross-enterprise distributed information systems do
not need proactive behaviour, nor do they need any other form of sophisticated
human-like intelligence. Rather, such agents typically have a complicated
structure of beliefs and commitments and a reactive behaviour based on them,
both of which can be captured by the RAP/AOR methodol ogy.

Two particular strengths of the proposed methodology are its ontological
foundation anditsuse of simulationfor achieving moreagility. Another strength
is the possibility to represent the models of the interaction, information, and
behaviour viewpoint aspectsin just oneintegrated diagram. Thisovercomesthe
model multiplicity problem (Peleg & Dori, 2000), which is that, to understand
the system being studied and the way it operates and changes over time, the
reader must concurrently refer to various models.

An important open issue for RAP/AOR is the potential for an operational
commitment concept for designing and controlling business-to-businessinterac-
tions. The basic assumption of AOR modelling that, in addition to beliefs and
perceptions, commitmentsarethethird mental state component that isimportant
for understanding and designing agent-to-agent interactions, has not yet been
validated in novel technologiesand practical applications.

Conclusion

In this chapter, we have introduced the RAP/AOR methodology for agent-
oriented information systems engineering. Unlike many other agent-oriented
methodologies, RAP/AOR is not intended to be used in the development of Al
agent systems; rather, it targets the development of large-scale distributed and
cross-enterprise businessinformation systems that may include or even consist
of software agents. RAP/AOR is an agent-oriented extension of RUP+UML by
adding themental state structuremodel ling constructsof agents, events, actions,
commitments, and claims, and by adding the behaviour modelling constructs of
reactionrulesand activities. Additionally, thesemodelling constructsfit well with
MDA. In particular, they yield a higher level PIM language that allows a more
direct mapping of CIM elements to PIM elements.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 313

Refer ences

Austin, J. (1962). How to do thing with words. Urmson Editor, Oxford, UK:
Clarenson Press.

Beck, K. (1999). Extreme programming explained: Embrace change. India-
napolis, IN: Addison-Wesley Professional.

Bernon, C., Glaizes, M-P., Peyruqueou, S., & Picard, G. (2002). ADELFE, a
methodol ogy for adaptive multi-agent systems engineering. In P. Petta, R.
Tolksdorf, & F. Zambonelli, F. (Eds.), Engineering Societies in the
Agents World Il1, Third International Workshop (ESAW 2002), Madrid,
Spain, September 16-17. Revised Papers (pp. 156-169). LNAI 2577.
Berlin: Springer-Verlag.

BPML (2002). Business Process Modeling Language 1.0 and Business Process
Modeling Notation 0.9. (2002). Retrieved September 4, 2004, from http:/
/www.bpmi.org.

Capera, D., Georgé, J-P., Gleizes, M-P., & Glize, P. (2003). The AMAStheory
for complex problem solving based on self-organizing cooperative agents.
In Proceedings of the 1st International Workshop on Theory and
Practice of Open Computational Systems (TAPOCS03@WETICE 2003),
Linz, Austria, June.

Cockburn, A. (1997a). Goals and use cases. Journal of Object-Oriented
Programming, September.

Cockburn, A. (1997b). Using goal-based use cases. Journal of Object-
Oriented Programming, November/December.

Cockburn, A. (2001). Writing effective use cases. Reading, MA: Addison-
Wesley.

Eshuis, R., Jansen, D. N., & Wieringa, R. J. (2002). Requirements-level
semantics and model checking of object-oriented statecharts. Require-
ments Engineering Journal, 7(4), 243-263.

Evans, R., Kearney, P., Stark, J., Caire, G., Garijo, F. J., Gomez Sanz, J. J.,
Pavon, J., Leadl, F., Chainho, P., & Massonet, P. (2001). MESSAGE:
Methodology for Engineering Systems of Software Agents. EURESCOM
Technical Information, 2001. Retrieved August 31, 2004, from http://
www.eurescom.de/~pub-deliverables/P900-series/P907/TI1/
p907til.pdf

Fowler, M. (2003). The new methodology. Retrieved September 4, 2004, from
http://martinfowler.com/articles/newMethodol ogy.html#N400315

Guizzardi, G. & Wagner, G. (2004). On the ontological foundations of agent
concepts. In Proceedings of International Workshop on Agent-Ori-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

314 Taveter & Wagner

ented Information Systems (AOIS-2004) at CAISE 2004, Riga, Latvia,
June.

Jacobson, |. (1992). Object-oriented software engineering: A use-case
driven approach. Reading, MA: Addison-Wesley.

Jacobson, |., Booch, G., & Rumbaugh, J. (1999). Unified software develop-
ment process. Reading, MA: Addison-Wesley.

Kruchten, P. (1999). Rational unified process — An introduction. Reading,
MA: Addison-Wesley.

Kueng, P. & Kawalek, P. (1997). Goal-based business process models: Creation
and evaluation. Business Process Management Journal, 3(1), 17-38.

Lamsweerde, A. van. (2003). From system goalsto software architecture. InM.
Bernardo & P. Inverardi (Eds.), Formal methods for software architec-
tures, LNCS, 2804 (pp. 25-43). Berlin: Springer-Verlag.

Luin, J., van, Tulba, F., & Wagner, G. (2004). Remodelling the beer game asan
agent-object-relationship simulation. In Proceedings of Workshop 2003:
Agent-Based Simulation 5, Lisbon, Portugal, 3-5 May. SCS European
Publishing House.

OMG (2003a). Unified modeling language specification. March 2003, Version
1.5. Retrieved September 28, 2004, from http://www.omg.org/cgi-bin/
doc?formal/03-03-01

OMG (2003b). Unified modeling language: Superstructure. Version 2.0, August
2003. Retrieved September 25, 2004, from http: //www.omg.org/cgi-bin/
doc?ptc/2003-08-02

Peleg, M. & Dori, D. (2000). Themodel multiplicity problem: Experimenting with
real-time specification methods. |EEE Transactions on Software Engi-
neering, 26(8).

Putman, J. & Boehm, B. (2001). Architecting with RM-ODP. Upper Saddle
River, NJ: Prentice Hall.

Rao, A. S. & Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, & E. Sandewall. (Eds.), Proceedings of
Knowledge Representation 91 (KR-91). San Mateo, CA: Morgan
Kaufmann.

Searle, J. R. (1995). The construction of social reality. New Y ork: Free Press.

Sowa, J. F. & Zachman, J. A. (1992). Extending and formalizing the framework
for information systems architecture. IBM Systems Journal, 31(3).

SPEM: Software Process Engineering Metamodel Specification. November
2002, Version 1.0. Retrieved October 20, 2004, from http://www.omg.or g/
docs/formal/02-11-14.pdf

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Towards Radical Agent-Oriented Software Engineering Processes 315

Taveter, K. (2004a). A multi-perspective methodology for agent-oriented
business modelling and simulation. Ph.D. Thesis, Tallinn University of
Technology, Estonia. (ISBN 9985-59-439-8).

Taveter, K. (2004b). From business process modelling to business process
automation. In J. Cordeiro & J. Filipe (Eds.), Computer-supported
activity coordination — Proceedings of the 1st International Workshop
on Computer Supported Activity Coordination (CSAC 2004). In con-
junction with ICEI'S 2004, Porto, Portugal, April (pp. 198-210). Setubal ,
Portugal: INSTICC Press.

Wagner, G. (2003a). The agent-object-relationship meta-model: Towards a
unified view of state and behavior. Information Systems, 28(5), 475-504.
Available online at http://aor.rezearch.info/

Wagner, G. (2003b). A UML profilefor external AOR models. InF.Giunchiglia,
J. Odell, & G. Weiss (Eds.), Agent-Oriented Software Engineering IlI,
Third International Workshop, AOSE 2002. Bologna, Italy, July 15,
Revised Papers and Invited Contributions. LNCS, Vol. 2585. Berlin:
Springer-Verlag.

Wagner, G. & Tulba, F. (2003). Agent-oriented modeling and agent-based
simulation. In P. Giorgini & B. Henderson-Sellers, (Eds.), Conceptual
modeling for ,novel application domains. LNCS, Vol. 2814. Berlin:
Springer-Verlag.

Workflow Patterns. (2003). Retrieved September 25, 2004, from http://
tmitwww.tm.tue.nl/resear ch/patterns/

W3C (2003). Web Services Architecture (WSA). W3C Working Draft, 8
August 2003. Retrieved September 29, 2004, from http: //www.w3.org/TR/
2003/WD-ws-arch-20030808/

W3C (2004). Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language. W3C Working Draft, 3 August 2004. Retrieved Septem-
ber 27, 2004, from http://www.w3.or g/ TR/2004/WD-wsdl 20-20040803/

Yu, E. (1995). Modeling strategic relationships for process reengineering.
Ph.D. Thesis, Department of Computer Science, University of Toronto,
Canada.

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2001). Organisational
abstractions for the analysis and design of multi-agent systems. In P.
Ciancarini & M. Wooldridge (Eds.), Agent-oriented software engineer-
ing. LNCS 1957 (pp.127-141). Berlin: Springer-Verlag.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

316 Taveter & Wagner

Endnotes

! Strictly speaking, the RAP defines a process type family whose members
are process types that can be instantiated by different process individu-
als. It iscommon practice, though, to use theterm “ process” ambiguously
both at the level of types and at the level of instances.

2 The RAP/AOR methodology has, for example, been used for creating a
prototypical system for the automation of business-to-business processes
described in Taveter (2004b).

3 Arolecan beunderstood as an “ abstract characterization of the behaviour
of asocial actor within some specialized context or domain of endeavor”
(Yu, 1995), such astherole Seller.

4 We use the terms “actor” and “agent” as synonyms.
5 These functions are actually speech acts (Austin, 1962).

6 A subfunction is a use case that is below the main level of interest of the
primary actor.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

